https://www.selleckchem.com/products/Tie2-kinase-inhibitor.html 87) and clustering level (0.28) than number of probes (-0.09) and sampling strategy (0.04). Comparison of operating characteristic curves indicate all sampling strategies have similar average performance at the 20 ppb threshold (0.8-3.5% absolute marginal change), but systematic sampling has larger variability at clustering levels above 100. Taking extra probes improves detection (1.8% increase in absolute marginal change) when aflatoxin is spatially clustered at 1,000 kernels/cluster, but not when contaminated grains are homogenously distributed. Therefore, taking many small samples, for example, autosampling, may increase sampling plan reliability. The simulation is provided as an R Shiny web app for stakeholder use evaluating grain sampling plans.Room-temperature (RT) sodium-sulfur (Na-S) batteries hold great promise for large-scale energy storage due to the advantages of high energy density, low cost, and resource abundance. The research progress on RT Na-S batteries, however, has been greatly hindered by the sluggish kinetics of the sulfur redox reactions. Herein, an elaborate multifunctional architecture, consisting of N-doped carbon skeletons and tunable MoS2 sulfiphilic sites, is fabricated via a simple one-pot reaction followed by in situ sulfurization. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS2 active sites play a key role in catalyzing polysulfide redox reactions, especially the conversion from long-chain Na2 Sn (4 ≤ n ≤ 8) to short-chain Na2 S2 and Na2 S. Significantly, the electrocatalytic activity of MoS2 can be tunable via adjusting the discharge depth. It is remarkable that the sodiated MoS2 exhibits much stronger binding energy and electrocatalytic behavior compared to MoS2 sites, effectively enhancing the formation of the final Na2 S product. Consequently, the S cathode achieves superior electrochemical performance in R