https://www.selleckchem.com/products/lanifibranor-iva-337.html The observation of a strong C-term Faraday rotation in solid-state organometallic materials provides the groundwork for the development of high-performance metallocene-based Faraday rotators.By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, Ba8H46, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric Pm3¯n structure with an unusual 5341 hydrogen-to-barium ratio. This singular stoichiometry corresponds to the well-defined type-I clathrate geometry. This clathrate consists of a Weaire-Phelan hydrogen structure with the barium atoms forming a topologically close-packed phase. In particular, the structure is formed by H20 and H24 clathrate cages showing substantially weakened H-H interactions. Density functional theory (DFT) demonstrates that cubic Pm3¯n Ba8H46 requires dynamical effects to stabilize the H20 and H24 clathrate cages.Cysteine dioxygenase (CDO) is a nonheme mononuclear iron enzyme, which catalyzes the oxidation of cysteine to cysteine sulfinic acid. Crystal structure studies of mammalian CDO showed that there is a cross-linked cysteine-tyrosine (Cys-Tyr) cofactor in its active site. Moreover, the formation of the Cys-Tyr cofactor requires the metal cofactor (Fe2+) and O2, and it was previously considered to substantially enhance the catalytic efficiency and half-life of CDO. Recently, a pure human CDO (F2-CDO) without including the Cys-Tyr cofactor was crystalized by the site-directed mutagenesis approach in the anaerobic condition. In this work, to gain insights into the formation mechanism of the Cys-Tyr cofactor and whether it can really promote the catalytic reactivity of CDO, a series of computational models have been constructed, and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation