https://www.selleckchem.com/products/gdc-0084.html ression was decreased in SG compared to the untreated group. In the muscle, the levels of phosphorylated mechanistic target of rapamycin (mTOR) were increased in the AVSSL, but decreased in the SG group compared to the control. Collectively, these data indicate that supplementation of the phytogenics AVSSL and SG in water reduced hepatic lipogenesis-related proteins and increased adipose tissue lipolysis- and muscle protein synthesis-associated targets, which might explain, at least partially, the improvement in FE observed in previous research.Compaction of cold asphalt mixtures is a subject that has not been thoroughly studied, and, for this reason, requires new efforts from researchers to have a better understanding. Unlike hot mixtures, cold mixtures and mainly recycled mixtures require specific considerations for compaction. There is a lack of consensus about the methodology to select the optimum premix water and emulsion contents. In the absence of specific regulations, the use of soil tests or hot mixtures procedures is common. For these reasons, this investigation's main goal was to evaluate two compaction methods used to design cold recycled mixtures with emulsion the modified Proctor procedure and the gyratory compaction. It was concluded that both methods could be useful to study compactability since consistent results were obtained by applying the maximum bulk density criterion. However, the higher bulk densities achieved, the smaller specimens used, and the suitability of the gyratory specimens to be later tested for mechanical properties make them preferable to the modified Proctor samples. A new approach has been proposed using iso-density lines on dual-axis premix water content-emulsion content graphs that facilitates the study of the influence on compactability of these two factors combined. These contributions can alleviate the laboratory works during the design of cold recycled asphalt mixtures an