https://www.selleckchem.com/products/amg-perk-44.html Finally, our data indicated that the pro-apoptotic effect of Pum2 was dependent on Sirt1 and AMPK. Collectively, our results provide the evidence that Pum2-mediated Sirt1 mRNA decay plays a detrimental role in H/R-induced cardiomyocytes injury.Objectives Cisplatin is commonly applied as anticancer agent for various cancers, including ovarian cancer. Unfortunately, the drug resistance frequently occurred which obstructing the effect of cisplatin on tumors. The goal of our research was to investigate the reversal actions and the potential mechanisms of sulforaphane (SFN) on cisplatin resistance in ovarian carcinoma. Methods The A2780 and IGROV1 cells and their cisplatin resistance cells A2780/CP70 and IGROV1-R10 were used in this study. Cell viability was detected by CCK-8. The DNA repair was measured by comet assay. The cisplatin transporter proteins were measured with western blotting. The concentration of intracellular cisplatin was detected by HPLC. The luciferase activity assay was applied to determine the target site of miR-30a-3p on the 3'UTR of ERCC1 and ATP7A. A2780/CP70 and IGROV1-R10 xenograft mouse model were established to confirm the antineoplastic action of SFN combined with cisplatin. Results SFN reversed the resistance of A2780/CP70 and IGROV1-R10 ovarian carcinoma cells to cisplatin through inducing DNA damage and accumulation of intracellular cisplatin. SFN treatment notably increased miR-30a-3p expression, which was decreased in cisplatin-resistant cells. Moreover, overexpressed miR-30a-3p enhanced the sensitivity of A2780/CP70 and IGROV1-R10 cells to cisplatin treatment, and inhibiting miR-30a-3p activity abated the reversal actions of SFN on cisplatin resistance. The luciferase assay findings showed that miR-30a-3p binds to ERCC1 and ATP7A which are the key regulators for DNA repair and cisplatin transportation. Conclusions Our findings indicated that SFN could enhance cisplatin sensitivity of