https://www.selleckchem.com/products/orelabrutinib.html Ethyl and phenyl thioglycosides are the two most common types of thioglycoside donors in carbohydrate chemistry. However, the chemoselective activation of ethyl vs. phenyl thioglycosides is very rare in the literature. In this work, ethyl thioglycosides could be readily activated with an N-trifluoromethylthiosaccharin/TMSOTf system in the presence of phenyl thioglycosides carrying the same or even more armed protecting group pattern. Both armed and disarmed thioglycosides exhibited high chemoselectivity towards the promoter system. Chemoselective glycosylation was subsequently applied to one-pot synthesis, thus providing an efficient means to oligosaccharides.Functionalization of metal-organic framework (MOF) ligands can tune the adsorption properties of MOFs. The adsorptions of NO, NO2, NH3, C5H5N, C4H5N, and C4H4O on pristine and five X-functionalized HKUST-1, i.e. Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (X = CH3, CH3O, NH2, NO2, and Br) are evaluated by van der Waals corrected density functional theory calculations. Despite the fact that the open metal center is the energetically preferred adsorption site for most of them, the functional group site can yield a comparable adsorption ability with the open metal center. This is particularly true for pyrrole C4H5N adsorption on CH3O-functionalized HKUST-1 where the functional group site shows stronger adsorption stability than the open metal center site, probably due to the formed hydrogen bond between pyrrole and the CH3O functional group. While the CH3- or CH3O-functionalized organic linker in these MOFs strengthens the adsorption of all the considered species, that of NO2-, Br-, or NH2-functional groups reduces, which is associated with their topologies. Among them, only CH3- or CH3O-functionalized HKUST-1 presents the fmj (orthorhombic crystal system) topology while all the others are isostructural to the pristine HKUST-1 with the tbo (twisted boracite