https://www.selleckchem.com/products/NVP-TAE684.html coli cell size determinants showed that FA synthesis primarily determines E. coli cell size. Upon modest induction of FadR, cell size increases, but at the cost of growth rate and accumulation of intracellular membranes. Greater induction resulted in further growth rate decreases and abnormal cells. Hence, too much FadR is bad. FadR is extraordinarily conserved in γ-proteobacteria but has migrated. Mycobacterium tuberculosis encodes FadR orthologs one of which is functional in E. coli. Strikingly, the FadR theme of acyl-CoA-dependent transcriptional regulation is found in a different transcription factor family where two Bacillus species plus bacterial and archaeal thermophiles contain related proteins of similar function.The molecular mechanism of high-temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS-responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar 'Unnat Halna' and dissected the HTS-responsive proteome landscape. This led to the identification of 55 HTS-responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2-cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp-silenced plants, while upregulation was observed in Ta2CP-overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb-silenced plants and reduction of protochlorophyllide in Ta2cp-silenced plants suggested the key role of Ta2CP in