https://www.selleckchem.com/pharmacological_epigenetics.html PURPOSE The aim of this work is to implement real-time 3D MR thermometry for high intensity focused ultrasound (HIFU) monitoring. METHODS Volumetric MR thermometry was implemented based on a 3D echo-shifted sequence with short TR to improve temperature sensitivity. The 3D acquisition was accelerated in two phase encoding directions with controlled aliasing in volumetric parallel imaging (CAIPIRINHA). Image reconstruction was run in an open source reconstruction platform (Gadgetron). RESULTS Phantom experiments showed the proposed volumetric thermometry was comparable to the fiber optical thermometer. In-vivo animal experiments in rabbit thigh showed that the temperature error before and after 4× acceleration was less than 0.65 °C. Finally, real-time 3D thermometry with temporal resolution ~3 s and spatial resolution 2 × 2 × 5 mm3 (spatial coverage 192 × 192 × 80 mm3) was achieved with Gadgetron reconstruction. CONCLUSION Real-time temperature monitoring was achieved in-vivo by using parallel imaging accelerated 3D echo-shifted sequence with Gadgetron reconstruction. Cystic echinococcosis (CE) is a severe parasitic zoonosis caused by the metacestode of the tapeworm Echinococcus granulosus sensu lato (s.l.). The disease has a global distribution representing a significant public health concern. Based on mitochondrial DNA analysis E. granulosus s.l. has been subdivided into five species E. granulosus sensu stricto (s.s.) (G1, G3 genotype), E. equinus (G4 genotype), E. ortleppi (G5 genotype), E. canadensis (G6-G8, G10 genotype) and E. felidis. E. granulosus s.s., and in particular G1, is the most widespread genotype and the major responsible of human CE cases worldwide. In Italy G1 genotype is higly represented with larger percentages in some hyperendemic areas such as Sardinia. Molecular studies represent a valuable tool to improve our understanding of the E. granulosus epidemiology and CE control strategies.