An Imaging Fast Ion D-alpha (IFIDA) diagnostic, characterized by a high optical spatial resolution of ≤2 mm for accurate validation of energetic particle (EP) transport models, has been developed on DIII-D. The diagnostic provides a 2D image in the radial-poloidal plane of the FIDA signal generated by EP emission after charge exchange with an injected neutral beam. A narrow passband filter integrates the FIDA signal in the spectral region of 650-652 nm (blue-shifted FIDA tail), which is mostly generated by co-passing EPs of energies E ≃ 40-80 keV. A beam modulation technique is employed to estimate the active component of the signal, which is then used to compute EP profiles and gradients with a higher accuracy than the standard spectroscopic FIDA diagnostic. The current diagnostic time resolution is ≃3 ms. In this work, the IFIDA diagnostic design is explained and data are compared with the spectroscopic FIDA diagnostic, which shares the same viewing geometry, to assess the improvements in EP profile reconstruction.Single-turn coil (STC) technique is a convenient way to generate ultrahigh magnetic fields of more than 100 T. During the field generation, the STC explosively destructs outward due to the Maxwell stress and Joule heating. Unfortunately, the STC does not work at its full potential because it has already expanded when the maximum magnetic field is reached. Here, we propose an easy way to delay the expansion and increase the maximum field by using a mass-loaded STC. By loading clay on the STC, the field profile drastically changes, and the maximum field increases by 4%. This method offers access to higher magnetic fields for physical property measurements.Optical collective Thomson scattering (TS) is used to diagnose magnetized high energy density physics experiments at the Magpie pulsed-power generator at Imperial College London. The system uses an amplified pulse from the second harmonic of a NdYAG laser (3 J, 8 ns, 532 nm) to probe a wide diversity of high-temperature plasma objects, with densities in the range of 1017-1019 cm-3 and temperatures between 10 eV and a few keV. The scattered light is collected from 100 μm-scale volumes within the plasmas, which are imaged onto optical fiber arrays. Multiple collection systems observe these volumes from different directions, providing simultaneous probing with different scattering K-vectors (and different associated α-parameters, typically in the range of 0.5-3), allowing independent measurements of separate velocity components of the bulk plasma flow. The fiber arrays are coupled to an imaging spectrometer with a gated intensified charge coupled device. The spectrometer is configured to view the ion-acoustic waves of the collective Thomson scattered spectrum. Fits to the spectra with the theoretical spectral density function S(K, ω) yield measurements of the local plasma temperatures and velocities. Fitting is constrained by independent measurements of the electron density from laser interferometry and the corresponding spectra for different scattering vectors. This TS diagnostic has been successfully implemented on a wide range of experiments, revealing temperature and flow velocity transitions across magnetized shocks, inside rotating plasma jets and imploding wire arrays, as well as providing direct measurements of drift velocities inside a magnetic reconnection current sheet.The Single Crystal Dispersion Interferometer (SCDI) is a newly developed dispersion interferometer (DI) system installed on KSTAR and has obtained the first data successfully in January 2020. Unlike conventional heterodyne DI systems, which use two nonlinear crystals, only one nonlinear crystal is used to eliminate the difficulty in overlapping the first and second harmonic beams, aligning and focusing the beams to a small aperture of the second nonlinear crystal, and resolving a problem of significant efforts to maintain the beam alignment to the second nonlinear crystal after a long beam transmission. The second nonlinear crystal is replaced by a frequency doubler, a simple electronic component. To infer a line integrated electron density with its associated uncertainty consistent with the measured data, we develop a forward model of the KSTAR SCDI that can be used as a likelihood within a Bayesian-based data analysis routine. The forward model consists of two main parts, which are an optical system and an electronics system, and it takes into account noises by modeling the mechanical vibrations and the electronic noises as Gaussian distributions, while the photon noise is modeled with a Poisson distribution. The developed forward model can be used for designing and improving the SCDI system.A new approach to measure the cross-plane thermal diffusivity of a microscale slab sample, which can be fabricated by the focused ion beam and attached to a substrate, is proposed. An intensity-modulated pump laser is applied to heat the front surface of the sample uniformly, and the thermoreflectance signal is observed at the rear surface to evaluate thermal wave transport in the material. https://www.selleckchem.com/products/imd-0354.html The thermal diffusivity can be obtained by fitting the phase lags of the experimental data with a theoretical model. The model was developed for the sample with thin-film coatings and heat transfer to the substrate. Although the absorbed heat can cause a significant DC temperature increase in the microscale sample, a thin-film coating with high thermal conductivity can effectively reduce the DC temperature increase within low thermal conductivity samples. To validate the method, we conducted measurements of a fused silica sample of 2.16 µm thickness, coated with 95 nm Ti film on the front surface and 120 nm Au film on the rear surface. The measured thermal diffusivity is in good agreement with the literature value. The uncertainty analysis shows that the measurement uncertainty is within 6%. This proposed approach, designed for microscale samples, offers a unique option for thermal property measurements of special materials, such as irradiated nuclear fuel or other irradiated materials, to enable microscale property determination while minimizing sample radioactivity.