https://www.selleckchem.com/products/Aloxistatin.html 96 ± 6.33% and 80.59 ± 0.30%, respectively, was achieved.Spray drying is the most commonly used encapsulation technique to stabilize sensitive bioactive compounds and sometimes enhances their performance. Vitamin B12 and vitamin D3 deficiencies are reported worldwide and co-encapsulation can provide a combined solution to this problem. The present work aimed at encapsulation of vitamin B12 and D3 by spray drying using experimental design to optimize wall material combination. Optimized solution obtained from the experimental design (gum acacia Hi-Cap® 100 maltodextrin = 38602) provided spherical particles with smooth surface and better stability of both the vitamins. In vitro release mechanism showed a slow release for both the vitamins after encapsulation. The optimized co-encapsulated microcapsules obtained in this work showed an improved bioavailability of 151% for vitamin B12 and 109% for vitamin D3 in comparison with the control. This study delivered a suitable medium to provide water soluble vitamin B12 and fat soluble vitamin D3 in single product.The influence of different fatty acid carbon chains on the kinetic interactions of nanocomplexes between esterified astaxanthin (E-Asta) and β-lactoglobulin (β-Lg) were investigated by multi-spectroscopy and molecular modeling techniques. We synthesized ten different E-Asta bound to β-Lg and formed nanocomplexes ( less then 300 nm). Fluorescence spectroscopy showed moderate affinities (binding constants Ka = 103-104 M-1). Docosahexaenoic acid astaxanthin monoester (Asta-C226) had the strongest binding affinity towards β-Lg (Ka = 3.77 × 104 M-1). The fluorescence quenching of β-Lg upon binding of E-Asta displayed a static mechanism, with binding sites (n) equal to 1. Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy revealed that E-Asta might enter the β-Lg hydrophobic cavity, leading to unfolding of the peptide chain skeleton.