https://www.selleckchem.com/products/triptolide.html We study, with molecular dynamics simulations, a lysozyme protein immersed in a water-trehalose solution upon cooling. The aim is to understand the cryoprotectant role played by this disaccharide through the modifications that it induces on the slow dynamics of protein hydration water with its presence. The α-relaxation shows a fragile to strong crossover about 20° higher than that in the bulk water phase and 15° higher than that in lysozyme hydration water without trehalose. The protein hydration water without trehalose was found to show a second slower relaxation exhibiting a strong to strong crossover coupled with the protein dynamical transition. This slower relaxation time importantly appears enormously slowed down in our cryoprotectant solution. On the other hand, this long-relaxation in the presence of trehalose is also connected with a stronger damping of the protein structural fluctuations than that found when the protein is in contact with the pure hydration water. Therefore, this appears to be the mechanism through which trehalose manifests its cryoprotecting function.In this work, a Raman bond model that partitions the Raman intensity to interatomic charge flow modulations or Raman bonds is extended from the static limit to frequency dependent cases. This model is based on damped response theory and, thus, enables a consistent treatment of off-resonance and resonance cases. Model systems consisting of pyridines and silver clusters are studied using time dependent density functional theory to understand the enhancement mechanisms of surface-enhanced Raman scattering (SERS). The Raman bonds in the molecule, the inter-fragment bond, and the cluster are mapped to the enhancement contributions of the molecular resonance mechanism, the charge transfer mechanism, and the electromagnetic mechanism. The mapping quantifies the interference among the coupled mechanisms and interprets the electromagnetic mechanism