https://www.selleckchem.com/CDK.html Taken together, these results demonstrate that H4R3me2s can be recognized as a reader protein that senses DNA damage and a writer protein that promotes DNA repair.Psychosocial stress has a profound impact on well-being and health. The response to stress is associated mainly with the amygdala, a crucial structure of the fear-defense system, essential for social cognition and emotion regulation. Recent neuroimaging-studies demonstrated how an increased metabolic activity of the amygdala enhances inflammation, and leads to cardiometabolic disease. The development of therapeutic strategies depends on our understanding of both which factors activate the fear-defense system and the subsequent molecular mechanisms that translate emotional stress into cell damage. Fear of emotions as an aftermath of attachment trauma is the most important trigger of the maladaptive activation of the fear-defense system. The central molecular pathways are enhanced myelopoiesis and upregulated proinflammatory gene expression, glucocorticoid and insulin resistance, and oxidative stress. Therapeutic strategies may benefit from holistic approaches. Psychotherapy can reduce the maladaptively increased activation of the fear-defense system. Biological interventions can buffer the detrimental effects of oxidative stress in the organism.Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box