https://www.selleckchem.com/products/Tretinoin(Aberela).html Plasmodium parasites are present in a wide range of host species, some of which tend to be more susceptible than others, potentially as an outcome of evolved tolerance or resistance. Common starlings seem to cope with malaria infection while common crossbills are more susceptible to the same infections. That raises the question if the parasites rely on the same molecular mechanisms regardless of host species or do Plasmodium parasites change gene-expressions in accordance to the environment different hosts might provide? We used RNA-sequencing from starlings and crossbills, experimentally infected with Plasmodium homocircumflexum (lineage pCOLL4). The assembled transcriptome contained a total of 26,733 contigs. Parasite expression patterns differed between bird species. Parasites had higher expression of cell-invasion genes when infecting crossbills compared to starlings whereas in starlings genes related to apoptosis or/and oxidative stress showed higher expression levels. This article reveals how a Plasmodium parasite might adjust its expression and gene function depending on the host species infected. Inverted repeats (IR) play important roles in specific DNA-dependent processes in simple prokaryotes to complex eukaryotes. They are recognized by a variety of proteins including restriction enzymes, helicases and transcription factors. We evaluate the presence and localization of IRs in all validated human promoter sequences within 1000 bp upstream and downstream of the transcription start site (TSS). The occurrence of 7 bp and longer IRs is located non-randomly in promoter regions, with enrichment within 200 bp upstream of the TSS. The highest frequency of IRs is just before TSS for repeats of 8 bp or longer. A comparison of promoters divided according to the occurrence of five individual promoter motifs shows unique location patterns of IRs. Principal component analyses and hierarchical clustering of IR