https://www.selleckchem.com/products/osmi-4.html Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.Alkali metals are widely studied in various fields such as medicine and battery. However, limited by the chemical reactivity and electron/ion beam sensitivity, the intrinsic atomic structure of alkali metals and its fundamental properties are difficult to be revealed. Here, a simple and versatile method is proposed to form the alkali metals in situ inside the transmission electron microscope. Taking alkali salts as the starting materials and electron beam as the trigger, alkali metals can be obtained directly. With this method, atomic resolution imaging of lithium and sodium metal is achieved at room temperature, and the growth of alkali metals is visualized at atomic-scale with millisecond temporal resolution. Furthermore, our observations unravel the ambiguities in lithium metal growth on garnet-type solid electrolytes for lithium-metal batteries. Finally, our method enables a direct study of physical contact property of lithium metal as well as its surface passivation oxide layer, which may contribute to better understanding of lithium dendrite and solid electrolyte interphase issues in lithium ion batteries.In the Paleolithic, geometric signs are abundant. They appear in rock art as well as on mobile objects like artworks, tools, or personal ornaments. These signs are often interpreted as a reflection of symbolic thought and associated with the origin of cognitively modern behavior. SignBase is a project collecting the wealth of geometric signs on mobile objects in the European Upper Paleolithic, African Middle Stone Age (MSA), as well as selected sites from the Near East and South East Asia. Currently, more than 500 objects of the Aurignacian techno-complex (ca. 43,000 to 30,000 years BP) are registered in SignBase. They are linked to information about geographic and