Convolutional neural networks (CNNs) have gained remarkable success on many image classification tasks in recent years. However, the performance of CNNs highly relies upon their architectures. For the most state-of-the-art CNNs, their architectures are often manually designed with expertise in both CNNs and the investigated problems. Therefore, it is difficult for users, who have no extended expertise in CNNs, to design optimal CNN architectures for their own image classification problems of interest. In this article, we propose an automatic CNN architecture design method by using genetic algorithms, to effectively address the image classification tasks. The most merit of the proposed algorithm remains in its ``automatic'' characteristic that users do not need domain knowledge of CNNs when using the proposed algorithm, while they can still obtain a promising CNN architecture for the given images. The proposed algorithm is validated on widely used benchmark image classification datasets, compared to the state-of-the-art peer competitors covering eight manually designed CNNs, seven automatic + manually tuning, and five automatic CNN architecture design algorithms. The experimental results indicate the proposed algorithm outperforms the existing automatic CNN architecture design algorithms in terms of classification accuracy, parameter numbers, and consumed computational resources. The proposed algorithm also shows the very comparable classification accuracy to the best one from manually designed and automatic + manually tuning CNNs, while consuming fewer computational resources.Common spatial pattern (CSP) is one of the most successful feature extraction algorithms for brain-computer interfaces (BCIs). It aims to find spatial filters that maximize the projected variance ratio between the covariance matrices of the multichannel electroencephalography (EEG) signals corresponding to two mental tasks, which can be formulated as a generalized eigenvalue problem (GEP). However, it is challenging in principle to impose additional regularization onto the CSP to obtain structural solutions (e.g., sparse CSP) due to the intrinsic nonconvexity and invariance property of GEPs. This article reformulates the CSP as a constrained minimization problem and establishes the equivalence of the reformulated and the original CSPs. An efficient algorithm is proposed to solve this optimization problem by alternately performing singular value decomposition (SVD) and least squares. Under this new formulation, various regularization techniques for linear regression can then be easily implemented to regularize the CSPs for different learning paradigms, such as the sparse CSP, the transfer CSP, and the multisubject CSP. Evaluations on three BCI competition datasets show that the regularized CSP algorithms outperform other baselines, especially for the high-dimensional small training set. The extensive results validate the efficiency and effectiveness of the proposed CSP formulation in different learning contexts.Humans have the ability to identify recurring patterns in diverse situations encountered over a lifetime, constantly understanding relationships between tasks and efficiently solving them through knowledge reuse. The capacity of artificial intelligence systems to mimic such cognitive behaviors for effective problem solving is deemed invaluable, particularly when tackling real-world problems where speed and accuracy are critical. Recently, the notion of evolutionary multitasking has been explored as a means of solving multiple optimization tasks simultaneously using a single population of evolving individuals. In the presence of similarities (or even partial overlaps) between high-quality solutions of related optimization problems, the resulting scope for intertask genetic transfer often leads to significant performance speedup--as the cost of re-exploring overlapping regions of the search space is reduced. While multitasking solvers have led to recent success stories, a known shortcoming of existing methods is their inability to adapt the extent of transfer in a principled manner. Thus, in the absence of any prior knowledge about the relationships between optimization functions, a threat of predominantly negative (harmful) transfer prevails. With this in mind, this article presents a realization of a cognizant evolutionary multitasking engine within the domain of multiobjective optimization. Our proposed algorithm learns intertask relationships based on overlaps in the probabilistic search distributions derived from data generated during the course of multitasking--and accordingly adapts the extent of genetic transfers online. The efficacy of the method is substantiated on multiobjective benchmark problems as well as a practical case study of knowledge transfers from low-fidelity optimization tasks to substantially reduce the cost of high-fidelity optimization.Consensus control of multiagent systems (MASs) has applications in various domains. As MASs work in networked environments, their security control becomes critically desirable in response to various cyberattacks, such as denial of service (DoS). Efforts have been made in the development of both time- and event-triggered consensus control of MASs. However, there is a lack of precise calculation of control input during the attacking periods. To address this issue, a distributed secure consensus control with event triggering is developed for linear leader-following MASs under DoS attacks. It is designed with a dual-terminal event-triggered mechanism, which schedules information transmission through two triggered functions for each follower one on the measurement channel (sensor-to-controller) and the other on the control channel (controller-to-actuator). https://www.selleckchem.com/products/c646.html To deal with DoS attacks, the combined states in the triggered functions are replaced by their estimations from an observer. Sufficient conditions are established for the duration and frequency of DoS attacks. To remove continuous monitoring of the measurement errors, a self-triggered secure control scheme is further developed, which combines the system states and other information at past triggered instants. Theoretical analysis shows that the followers in MASs under DoS attacks are able to track the leader and meanwhile the Zeno behavior is excluded. Case studies are conducted to demonstrate the effectiveness of our distributed secure consensus control of MASs.