https://www.selleckchem.com/products/pq912.html Electroporation is an electrical transformation method by which transient electropores are produced in the cell membranes. Based on the applications, process can be either reversible where electropores in membrane are resealable and cells preserve the vitality or irreversible where membrane is not able to reseal, and cell eventually dies. This problem can be minimized by developing numerical models to iteratively optimize the field homogeneity considering the cell size, shape, number, and electrode positions supplemented by real-time measurements. In modern biotechnology, numerical methods have been used in electrotransformation, electroporation-based inactivation, electroextraction, and electroporative biomass drying. Moreover, current applications of electroporation also point to some other uncovered potentials for various exploitations in future.PURPOSE Intraoperative optical coherence tomography (iOCT) was recently introduced as a new modality for ophthalmic surgeries. It provides real-time cross-sectional information at a very high resolution. However, properly positioning the scan location during surgery is cumbersome and time-consuming, as a surgeon needs both his hands for surgery. The goal of the present study is to present a method to automatically position an iOCT scan on an anatomy of interest in the context of anterior segment surgeries. METHODS First, a voice recognition algorithm using a context-free grammar is used to obtain the desired pose from the surgeon. Then, the limbus circle is detected in the microscope image and the iOCT scan is placed accordingly in the X-Y plane. Next, an iOCT sweep in Z direction is conducted and the scan is placed to centre the topmost structure. Finally, the position is fine-tuned using semantic segmentation and a rule-based system. RESULTS The logic to position the scan location on various anatomies was evaluated on ex vivo porcine eyes (10 eyes for corneal apex and 7 ey