https://www.selleckchem.com/ Multi-parametric prostate MRI (mpMRI) is a powerful tool to diagnose prostate cancer, though difficult to interpret even for experienced radiologists. A common radiological procedure is to compare a magnetic resonance image with similarly diagnosed cases. To assist the radiological image interpretation process, computerized Content-Based Image Retrieval systems (CBIRs) can therefore be employed to improve the reporting workflow and increase its accuracy. In this article, we propose a new, supervised siamese deep learning architecture able to handle multi-modal and multi-view MR images with similar PIRADS score. An experimental comparison with well-established deep learning-based CBIRs (namely standard siamese networks and autoencoders) showed significantly improved performance with respect to both diagnostic (ROC-AUC), and information retrieval metrics (Precision-Recall, Discounted Cumulative Gain and Mean Average Precision). Finally, the new proposed multi-view siamese network is general in design, facilitating a broad use in diagnostic medical imaging retrieval.Retinal fundus images are widely used for the clinical screening and diagnosis of eye diseases. However, fundus images captured by operators with various levels of experience have a large variation in quality. Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis. However, due to the special optical beam of fundus imaging and structure of the retina, natural image enhancement methods cannot be utilized directly to address this. In this article, we first analyze the ophthalmoscope imaging system and simulate a reliable degradation of major inferior-quality factors, including uneven illumination, image blurring, and artifacts. Then, based on the degradation model, a clinically oriented fundus enhancement network (cofe-Net) is proposed to suppress global degradation factors, while simultaneously preserving anatomical retinal str