Reducing the daily arrival rate of migrant workers for states with very high outflux of migrants (i.e., Uttar Pradesh and Bihar) can help to lower the surge in confirmed and active cases. Nevertheless, it could create a disparity in the number of days needed to transport all repatriating migrant workers to the home states. Hence, travel arrangements for about 100,000 migrant workers per day to Uttar Pradesh and Bihar, about 50,000 per day to Rajasthan and Madhya Pradesh, 20,000 per day to Maharashtra and less than 20,000 per day to other states of India was recommended.The spread of the new coronavirus COVID-19, has led to unparalleled global measures such as lockdown and suspension of all retail, recreation and religious activities during the first months of 2020. Nevertheless, no scientific evidence has been reported so far with regards to the impact on road safety and driving behavior. This paper investigates the effect of COVID-19 on driving behavior and safety indicators captured through a specially developed smartphone application and transmitted to a back-end platform. https://www.selleckchem.com/products/ozanimod-rpc1063.html These indicators are reflected with the spread of COVID-19 and the respective governmental countermeasures in two countries, namely Greece and Kingdom of Saudi Arabia (KSA), which had the most completed routes for users of the smartphone applications. It was shown that reduced traffic volumes due to lockdown, led to a slight increase in speeds by 6-11%, but more importantly to more frequent harsh acceleration and harsh braking events (up to 12% increase) as well mobile phone use (up to 42% increase) during March and April 2020, which were the months where COVID-19 spread was at its peak. On the bright side, accidents in Greece were reduced by 41% during the first month of COVID-19-induced measures and driving in the early morning hours (0000-0500) which are considered dangerous dropped by up to 81%. Policymakers should concentrate on establishing new speed limits and ensure larger spaces for cycling and pedestrians in order to enlarge distances between users in order to safeguard both an enhanced level of road safety and the prevention of COVID-19 spread.Minimizing all aspects of COVID-19 exposure is a high priority as universities prepare to reopen. One of those aspects includes developing protocols for interior spaces such as academic buildings. This paper applies mathematical modeling to investigate different virus exposure levels due to traffic patterns within academic buildings. The assumption used are 1) Risk of infection is a product of exposure rate and time and 2) the exposure rate decreases with distance. One-way vs. two-way pedestrian traffic scenarios within hallways were modeled and analyzed for various configurations. The underlying assumption that a small exposure to a large number of people is similar to a large exposure to a few people is the driver to minimize exposures levels in all aspects. The analysis indicates that minimizing the time spent in passing between classes is the driving factor in minimizing risk, and one-way traffic may increase the time required to pass between classes. While the case presented is limited, the modeled approaches are intended to provoke future research that can be extended and applied to larger populations to help provide decision makers with more rigorous tools to shape future policies regarding traffic flow within buildings.The COVID-19 pandemic has had a significant impact on the air transportation system worldwide. This paper aims at analyzing the effect of the travel restriction measures implemented during the COVID-19 pandemic from a passenger perspective on the US air transportation system. Four metrics based on data generated by passengers and airlines on social media are proposed to measure how the travel restriction measures impacted the relation between passengers and airlines in close to real-time. The proposed metrics indicate that each airline has reacted differently to the COVID-19 travel restriction measures from a passenger perspective, therefore they can be used by airlines and passengers to improve their decision making process. This report comes ahead of official data related to the same sequence of events, thereby showing the value of passenger-borne data in an industry where corporate priorities, institutional prudence, and passenger satisfaction come close together.In the current study, we examine, for the first time in the literature, the impact of exogenous effects in the shipping industry by employing data from the recent Covid-19 pandemic outbreak and explore the reactions of freight rates for dry bulk, clean, and dirty tankers. Our results, using both GARCH (1,1) and VAR specifications, suggest that such events are directly affecting the dry bulk and the dirty tanker segments. In addition, the results also suggest that second round effects, mostly via the decline in oil prices and, in some cases, third round effects via the impact from the stock market, also exist. Finally, by employing daily port calls a proxy variable for the demand for transportation services, we show that both the dry bulk and clean tankers are highly affected by the demand side of the economy, while vessels which transport crude oil do not register such a relationship.The COVID-19 global pandemic has rapidly expanded, with the UK being one of the countries with the highest number of cases and deaths in proportion to its population. Major clinical and human behavioural measures have been taken by the UK government to control the spread of the pandemic and to support the health system. It remains unclear how exactly human mobility restrictions have affected the virus spread in the UK. This research uses driving, walking and transit real-time data to investigate the impact of government control measures on human mobility reduction, as well as the connection between trends in human-mobility and severe COVID-19 outcomes. Human mobility was observed to gradually decrease as the government was announcing more measures and it stabilized at a scale of around 80% after a lockdown was imposed. The study shows that human-mobility reduction had a significant impact on reducing COVID-19-related deaths, thus providing crucial evidence in support of such government measures.