https://www.selleckchem.com/products/bms-986165.html In utero exposure to maternal tobacco smoking is the leading cause of birth complications in addition to being associated with later impairment in child's development. Epigenetic alterations, such as DNA methylation (DNAm), miRNAs expression, and histone modifications, belong to possible underlying mechanisms linking maternal tobacco smoking during pregnancy and adverse birth outcomes and later child's development. The aims of this review were to provide an update on (1) the main results of epidemiological studies on the impact of in utero exposure to maternal tobacco smoking on epigenetic mechanisms, and (2) the technical issues and methods used in such studies. In contrast with miRNA and histone modifications, DNAm has been the most extensively studied epigenetic mechanism with regard to in utero exposure to maternal tobacco smoking. Most studies relied on cord blood and children's blood, but placenta is increasingly recognized as a powerful tool, especially for markers of pregnancy exposures. Some recent sformation for future studies. Advancement in bioinformatic and biostatistics approaches is key to develop a comprehensive analysis of these biological systems.Alzheimer's disease (AD) is the most common cause of dementia in humans and, currently, a valid treatment is lacking. Our goal is to demonstrate the importance and benefits of the relationship with companion animals (considered as co-therapists), intended as a means of facilitating social relations and promoting evident wellbeing in AD patients. The study involved 30 randomly chosen patients with Alzheimer's disease (group T) and three dogs. The group participated in a total of 24 animal-assisted interventions (AAIs) sessions over a span of 12 weeks, using the Mini-Mental State Examination (MMSE), Wellness and Cognitive Ability Questionnaire (Brief Assessment Cognition or BAC), and Alzheimer's Disease Assessment Scale (ADAS) as assessment tests. A second