https://www.selleckchem.com/products/cu-cpt22.html Systematic toxicity and drug resistance significantly limited FDA-approved platinum drugs for further clinical applications. In order to reverse the resistance (MDR) and enhance their anticancer efficiency, four Pt(IV) complexes (12-15) conjugating with P-glycoprotein (P-gp) inhibitors were designed and synthesized. Among them, complex 14 (IC50 = 3.37 μM) efficiently reversed cisplatin resistance in SGC-7901/CDDP cell line and increased selectivity index (6.9) against normal HL-7702 cell line. Detailed mechanisms in SGC-7901/CDDP cells assays revealed that complex 14 efficiently induced apoptosis via down-regulating expression of P-gp for enhanced intracellular uptake of platinum, arrested cells at G2/M phase, induced DNA damage and initiated mitochondrial apoptosis pathway. Further in vivo studies demonstrated that the enhanced accumulation of complex 14 contributed to tumor inhibition of 75.6% in SGC-7901/CDDP xenografts, which was much higher than cisplatin (25.9%) and oxaliplatin (43%). Moreover, the low systematic toxicity made 14 a potential novel P-gp-mediated MDR modulator.This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended