https://www.selleckchem.com/products/mitoquinone-mesylate.html 6 ± 26.0 J m-2, which also is 40-400-fold, 2-40-fold, and ∼8-fold higher than those of the mussel-based adhesive, cyanoacrylate, and fibrin glues, respectively. Moreover, the hydrogels can gel rapidly within 60 s and have a tunable degradation suitable for tissue regeneration. Together with their cytocompatibility and good cell adhesion, they are promising materials as new biological adhesives.Fullerenes have been recognized as good candidates for solid lubricants. In this study, the microscale superlubricity of fullerene derivatives was accomplished by the construction of regular host-guest assembly structures. Herein, the host-guest assembly structures of fullerene derivatives were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing the macrocycles as the templates and were explicitly revealed by scanning tunneling microscopy (STM). Meanwhile, the nanotribological properties of the host-guest assemblies were measured using atomic force microscopy (AFM), revealing ultralow friction coefficients of 0.003-0.008, which could be attributed to the restriction on removal of fullerene molecules after introducing the templates. The interaction energies were calculated by density functional theory (DFT) method, which indicates the correlation between friction coefficients and interaction strength in the host-guest assemblies. The effort on fullerene-related superlubricity could extend the solid superlubrication systems and provide a novel pathway to explore the friction mechanisms at the molecular level.Existing tissue adhesives have a trade-off between adhesive strength and biocompatibility. Here, we report a series of biocompatible multiarmed polycaprolactones (PCL) as tissue adhesives that can be released from a hot glue gun and the length of each arm was kept at ∼2-3 kg mol-1 in all the polymers. The adhesion properties were dependent on the number of functionalized