https://www.selleckchem.com/CDK.html Metal halide perovskites have been widely applied in optoelectronic fields, but their poor stability hinders their actual applications. A perovskite-zeolite composite was synthesized via in situ growth in air from aluminophosphate AlPO-5 zeolite crystals and perovskite nanocrystals. The zeolite matrix provides quantum confinement for perovskite nanocrystals, achieving efficient green emission, and it passivates the defects of perovskite by H-bonding interaction, which leads to a longer lifetime compared to bulk perovskite film. Furthermore, the AlPO-5 zeolite also acts as a protection shield and enables ultrahigh stability of perovskite nanocrystals under 150 °C heat stress, under a 15-month long-term ambient exposure, and even in water for more than 2 weeks, respectively. The strategy of in situ passivation and encapsulation for the perovskite@AlPO-5 composite was amenable to a range of perovskites, from MA- to Cs-based perovskites. Benefiting from high stability and photoluminescence performance, the composite exhibits great potential to be virtually applied in light-emitting diodes (LEDs) and backlight displays.Advanced hepatitis B virus (HBV)-related hepatocellular carcinoma HCC with poor prognosis is often associated with chronic inflammation, immune tolerance, and marked heterogeneity. The interleukin-6 (IL-6)/JAK/STAT3 signal pathways play multiple regulatory roles in modulating inflammation and immunity in cancers. Polarization of myeloid-derived suppressor cells (MDSCs) is involved in HBV-related immunosuppression and CD8+ T-cell activation through ERK/IL-6/STAT3. Icaritin is a small molecule that has displayed anticancer activities through IL-6/JAK/STAT3 pathways in tumor cells and immune cells including CD8+ T cells, MDSCs, neutrophils, and macrophages. This study aimed to confirm icaritin immunomodulation in advanced HBV-related HCC patients with poor prognosis. Immunomodulation of MDSCs was evaluated in BALB/c mice i