https://www.selleckchem.com/products/tr-107.html The mean ± standard deviation of population exposures to PM2.5 was 21.3 ± 4.0 μg/m3 in summer, 9.8 ± 2.7 μg/m3 in autumn, and 29.9 ± 10.6 μg/m3 in winter. Exposure to PM2.5 higher than 35 μg/m3 mainly occurred in winter. Gender, age, working hours, and health condition were identified as significant determinants in the exposure groups. An "unhealthy" health condition was the most significant determinant. The high PM2.5 exposure group was characterized as a higher proportion of males of a lower age with longer working hours. The population exposure model for PM2.5 could be used to implement effective interventions and evaluate the effectiveness of control policies to reduce exposure.Current study was carried out with an objective to remediate highly contaminated sludge with HMX and RDX obtained from an explosive manufacturing facility in North India employing indigenous microbes, Arthrobacter subterraneus (isolate no. S2-TSB-17) and Bacillus sonorensis (isolate no. S8-TSB-4) which were isolated from the same contaminated site. In-vessel composting of the explosive contaminated sludge was performed in 12 different bioreactors using cow manure and garden waste as bulking agents. 78.5% degradation of HMX was observed in reactor no. 2 with Bacillus sonorensis having combination of 10% sludge, 70% cow manure and 20% garden waste on 80th day. Two secondary metabolites Bis(hydroxymethyl)nitramine and methylene dinitramine were identified while studying the degradation pathway. Similarly, degradation of 91.2% was observed for RDX in reactor no. 11 with consortia of Arthrobacter subterraneus and Bacillus sonorensis on 80th day. During the study, release of significant nitrate and nitrite ions were observed. It has already been established that RDX and HMX degradation leads to release of nitrite/nitrate ions. The highest nitrite (reactor no. 11) and nitrate (reactor no. 2) release observed were 24.02 ± 0.05 mg/kg and 30.65 ± 0.9