https://www.selleckchem.com/products/wnt-agonist-1.html © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Combining biological and small-molecule catalysts under a chemoenzymatic manifold presents a series of significant advantages to the synthetic community. We report herein the successful development of a two-step/single flask synthesis of γ-lactones through the merger of Umpolung catalysis with a ketoreductase-catalyzed dynamic kinetic resolution, reduction, and cyclization. This combined approach delivers highly enantio- and diastereoenriched heterocycles and demonstrates the feasibility of integrating NHC catalysis with enzymatic processes. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.BACKGROUND Current in vitro modeling systems do not fully reflect the biologic and clinical diversity of prostate cancer (PCa). Organoids are 3D in vitro cell cultures that recapitulate disease heterogeneity, retain prostate gland architecture, and mirror parental tumor characteristics. METHODS To make better use of organoid models in the PCa research field, we provide a review of cutting-edge prostate organoid methodologies, applications, and limitations. RESULTS We summarize methodologies for the establishment of benign prostate and PCa organoids and describe some of the model's practical applications and challenges. We highlight the patient-derived xenograft (PDX)-organoid interface model, which may allow for the generation of organoids from primary and rare PCa subtypes. Finally, we discuss potential future utilizations of PCa organoids in the realms of drug development and precision oncology. CONCLUSIONS AND FUTURE DIRECTIONS Organoids represent a quasi in vivo modeling system that can be easily amenable to genetic modification and functional studies. As such, organoids may serve as an intermediate preclinical model for studying PCa. Future directions may include the refinement of culturing conditions to increase drug response fidelity in PCa organoids. The PDX-organoid