https://www.selleckchem.com/ Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces. Natural biomimetic surfaces have the advantages of micro-/nanoroughness and minimized free energy characteristics that can motivate the dynamic fabrication of superhydrophobic antifouling surfaces. This review provides an architectural panorama of the biomimetic antifouling designs and their key leverages to broaden horizons in the controlled fabrication of nanocomposite building blocks as force-driven marine antifouling models. As primary antifouling designs, understanding the key functions of surface geometry, heterogeneity, superhydrophobicity, and complexity of polymer/nanofiller composite building blocks on fouling-resistant systems is crucial. This review also discusses a wide range of fouling release coating systems that satisfy the growing demand urfaces, and potential antifouling coatings. The development of modern research gateways is a candidate for the sustainable future of antifouling coatings.A number of major challenges facing modern society are related to the food supply. As the global population grows, it will be critical to feed everyone without damaging the environment. Advances in biotechnology, nanotechnology, structural design, and artificial intelligence are providing farmers and food manufacturers will new tools to address these problems. More and more people are migrating from rural to urban environments, leading to a change in their dietary habits, especially increasing consumption of animal-based products and highly-processed foods. Animal-based foods lead to more greenhouse gas production, land use, water use, and pollution than plant-based ones. Moreover, many animal-based and highly-processed foods have adverse effects on human health and wellbeing. Cons