https://www.selleckchem.com/products/fluorescein-5-isothiocyanate-fitc.html We present a novel view of the standard model of tunneling two level systems (TLSs) to explain the puzzling universal value of a quantity, C∼3×10^-4, that characterizes phonon scattering in glasses below 1 K as reflected in thermal conductivity, ultrasonic attenuation, internal friction, and the change in sound velocity. Physical considerations lead to a broad distribution of phonon-TLS couplings that (1) exponentially renormalize tunneling matrix elements, and (2) reduce the TLS density of states through TLS-TLS interactions. We find good agreement between theory and experiment for a variety of individual glasses.Hierarchy of crystal lattice instabilities leading to a first-order phase transformation (PT) is found, which consists of PT instability described by the order parameter and elastic instabilities under different prescribed stress measures. After PT instability and prior to the elastic instability, an unexpected continuous third-order PT was discovered, which is followed by a first-order PT after the elastic instability. Under prescribed compressive second Piola-Kirchhoff stress, PT is third order until completion; it occurs without hysteresis and dissipation, properties that are ideal for various applications. For heterogeneous perturbations and PT, first-order PT occurs when the first elastic instability criterion (among criteria corresponding to different stress measures) is met inside the volume, surprisingly independent of the stress measure prescribed at the boundary.The discovery of magnetic Weyl semimetal (magnetic WSM) in Co_3Sn_2S_2 has triggered great interest for abundant fascinating phenomena induced by band topology conspiring with the magnetism. Understanding how the magnetization affects the band structure can give us a deeper comprehension of the magnetic WSMs and guide us for the innovation in applications. Here, we systematically study the temperature-dependent op