https://www.selleckchem.com/products/srt2104-gsk2245840.html Food availability is a crucial ecological determinant of population size and community structure, and controls various life-history traits in most, if not all, species. Food availability is not constant; there are daily and seasonal differences in food abundance. When coupled to appetite (urge to eat), this is expressed as the eating schedule of a species. Food availability times affect daily and seasonal physiology and behaviour of organisms both directly (by affecting metabolic homeostasis) and indirectly (by altering synchronization of endogenous rhythms). Restricted food availability times may, for example, constrain reproductive output by limiting the number or quality of offspring or the number of reproductive attempts, as has been observed for nesting frequency in birds. Consuming food at the wrong time of day reduces the reproductive ability of a seasonal breeder, and can result in quality-quantity trade-offs of offspring. The food availability pattern serves as a conditioning environment, and can shape the activity of the genome by influencing chromatin activation/silencing; however, the functional linkage of food availability times with epigenetic control of physiology is only beginning to emerge. This Review gives insights into how food availability times, affected by changes in eating schedules and/or by alterations in feeding environment or lifestyle, could have hitherto unknown consequences on the physiology and reproductive fitness of seasonally breeding vertebrates and those that reproduce year round.Many human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result