https://www.selleckchem.com/products/bms-935177.html Here, we have proposed a novel strategy for its adhesion on the surface of the urinary catheter with the utilization of mannose-specific adhesin (Msa) protein in a way similar as uropathogenic bacteria interacts between Msa present on the tip of the type I fimbriae/pilus and the mannose moieties on the host epithelial cell surfaces. KEY POINTS • Urinary tract infection (UTI) is one of the common hospital-acquired infections, which is associated with the application of an indwelling urinary catheter. • Based on the competitive exclusions properties of LAB, attachment of the LAB on the catheter surface would be a promising approach to control the formation of pathogenic biofilm. • The strategy employed for the adhesion of LAB is via a covalent interaction of its mannose-specific adhesin (Msa) protein to the mannose residues grafted on the catheter surface.Intestinal microbiota play an important role in the intestinal immunity and nutrient absorption, even muscle nutritional components, and the composition and function were affected by environment. In this study, the intestinal microbiota and immune enzyme, nutritional flavor of muscle of crayfish in rice field, and pond cultivation model were compared in summer and autumn. The results of Shannon diversity and Chao 1 index of intestinal microbiota based on 16S sequencing analysis showed that the diversity and abundance in autumn were higher than in summer. And the diversity and abundance of intestinal microbiota of different model in the same season were different. Four dominant phyla (relative abundance > 5% at least in one sample) of the intestinal microbiota were Bacteroidetes, Firmicutes, Proteobacteria, and Tenericutes. From summer to autumn, the intestinal immune enzyme activity of crayfish in both models showed a decreasing trend. In summer, the activity of catalase and alkaline phosphatase of crayfish cultured in the pond was significantly higher than that in