https://www.selleckchem.com/products/iberdomide.html Bone implants play a crucial role in bone repairing. Nevertheless, low capability of osteoinductivity and osteogenic differentiation for bone regeneration are disadvantages of bone implants. Therefore, it is imperative to develop a general and facile technology to promote the bioactivity of existing implants. Herein, a facile amorphous carbon-coating approach was developed to stimulate osteogenesis on diverse biomaterials, including bioceramics, biometals, and biopolymers via magnetron sputtering deposition. The results confirmed that the amorphous carbon-coating-modified surfaces could significantly enhance osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on every kind of biomaterial surface. Furthermore, it was demonstrated that the FAK/ERK1/2 signaling pathways were involved in the osteogenic effects of this amorphous carbon coating. The bone regeneration ability using the calvarial bone defect model of rats confirmed that the amorphous carbon coating induced faster bone formation and mineralization, which suggested the effect of amorphous carbon coating on stimulating osteogenesis in vivo. These results suggest that the approach involving modifying a surface with amorphous carbon provides a general and simple strategy to enhance the osteogenesis for diverse biomaterials, and this has promising potential for bone repairing applications.A new method has been developed for the preparation of brightly fluorescent and stable DNA-silver nanoclusters (DNA-AgNCs). The approach takes advantage of specific interactions occurring between melamine and thymine residues in a DNA template. These interactions cause the formation of a melamine-DNA-AgNC complex (Mel-DNA-AgNCs), in which a change in the environment of the DNA template causes binding of additional Ag+ and an enhancement in the fluorescence efficiency and stability. The effects of the nature of the template DNA, DNA  Ag+  NaBH4 ratio, pH and temperature