Carbon tetrachloride (CT) is highly toxic and recalcitrant in groundwater. https://www.selleckchem.com/products/borussertib.html In recent years, zero-valent aluminum (ZVAl) is highly reductive but limited by its surface passivation film. One of the effective ways to overcome this bottleneck is to add ligands. In this paper, compared with several other ligands, sodium citrate (SC), a natural organic ligand, was introduced to enhance microscale ZVAl (mZVAl) reactivity for the reductive degradation of CT. The results showed that the SC system could effectively reduce but not completely dechlorinate CT and electron utilization efficiency was as high as 94%. However, without ligands, mZVAl is chemically inert for CT degradation. Through SEM-EDS, BET, XRD, and XPS characterizations and H2 evolution experiments, enhanced mZVAl surface corrosion at the solid-liquid interface of mZVAl/SC system was verified. SC participated in the complexation corrosion reaction with surface inert film to form Al[Cit] complex, which made internal Al0 active sites exposed and then promoted mZVAl corrosion. In the five consecutive reuse experiments of mZVAl, CT can be completely degraded, which indicates that mZVAl, with the help of SC, has excellent sustainable utilization efficiency.Shellfish growing waters contaminated with inadequately treated human wastewater is a major source of norovirus in shellfish and poses a significant human health risk to consumers. Microbial source tracking (MST) markers have been widely used to identify the source (s) of faecal contamination in water but data are limited on their use for shellfish safety. This study evaluated the source specificity, sensitivity, occurrence and concentration of three viral MST markers i.e. cross-assembly phage (crAssphage), F-specific RNA bacteriophage genogroup II (F-RNA phage GII) and pepper mild mottle virus (PMMoV) using animal faeces (n = 119; 16 animal groups), influent wastewater (n = 12), effluent wastewater (n = 16) and shellfish (n = 33). CrAssphage, F-RNA phage GII and PMMoV had source specific values of 0.97, 0.99 and 0.91, respectively. The sensitivity of MST markers was confirmed by their 100% detection frequency in influent wastewaters. The frequency of detection in effluent wastewater ranged from 81.3% (F-RNA phage GII) to 100% (PMMoV). Concentration of F-RNA phage GII was one log10 (influent wastewater) and 2-3 log10 (effluent wastewater) lower than crAssphage and PMMoV, respectively. Despite lower prevalence of F-RNA phage GII in oysters and mussels compared to crAssphage and PMMoV, concentrations of the three MST markers were similar in mussels. As an indicator of norovirus contamination in shellfish, crAssphage and PMMoV had greater predictive sensitivity (100%; [95% CI; 81.5%-100%)]) and F-RNA phage GII had greater predictive specificity (93.3%; [95% CI; 68.1%-99.8%]). In contrast, crAssphage and F-RNA phage GII have similar accuracy for predicting norovirus in shellfish, however, PMMoV significantly overestimated its presence. Therefore, a combination of crAssphage and F-RNA phage GII analysis of shellfish could provide a robust estimation of the presence of human faecal and norovirus contamination.Ship pollution has become a hot global issue. This study established a basic information database of Tianjin Port ship emissions and used it to screen representative ship types and perform real-world ship measurements by a portable emission measurement system (PEMS), which generated localized emission factors. The results show that the localized emission factors are significantly higher than those recommended in recommended in Chinese guidelines, which will lead to lower calculation results of the previous inventory. A high temporal-spatial ship emission inventory for Tianjin Port was developed using a "bottom-up" method based on automatic identification system (AIS) data by combining localized emission factors. The total estimated ship emissions for SO2, NOX, PM10, PM2.5, THC and CO in 2018 were 1.453 × 104 t, 2.861 × 104 t, 2.04 × 103 t, 1.82 × 103 t, 1.13 × 103 t, and 2.21 × 103 t, respectively. NOX was the primary pollutant, accounting for 56.9%, followed by SO2 (28.9%). The use of low-sulfur fuel in the port area has significantly reduced the discharge of SO2 and primary particles. The main channel and anchorage are the areas with the highest emission intensity. The intermonth ship emissions varied according to the ship activity, lowest in February and highest in May. The contribution of cargo transportation vessels to various pollutant emissions is more than 60%. Main engines (MEs) were the largest source of emissions, followed by auxiliary engines (AEs). NOX and SOX from ships have the greatest impact on the air quality in the surrounding area, especially in summer and autumn, as analyzed by the atmospheric dispersion modeling system (ADMS) model. Our research will update localized emission factors and inventories and evaluate the impact of ship emissions on air quality.Recently, sewage sludge (SS) disposal has become one of the greatest global challenges. In this study, we aimed to evaluate the effect of faba bean straw (Straw-B), wheat straw (Straw-W), and wood-chip pellets (WCP) amended to SS, as well as bioaugmentation (BA), on the physicochemical characteristics and structure of the microbial community of the treated SS. Sixteen days of incubation of SS-containing mixtures revealed the highest efficiency of Straw-W(BA) in terms of SS stabilisation, i.e., the highest and most stable respiration intensity, the lowest ammonia emission, and the highest stimulation effect on the cress seedling growth. Shotgun sequencing data analysis showed that Proteobacteria dominated in the raw SS with 60.17% reads, which consisted of 16.40%, 29.18%, and 12.33% of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, respectively. All treated samples were characterised by an increased abundance of Firmicutes (32.70-53.84%). A remarkable increase in virus abundance (0.34% reads) was detected in the treated SS, which was incubated without C amendment and bioaugmentation. The addition of C sources to the SS changed some physicochemical characteristics of the mixture. All of these findings provide novel insights toward a mechanistic understanding of the fate of the human sewage microbiome in wastewater and other environments.