https://www.selleckchem.com/products/donafenib-sorafenib-d3.html Nanosphere lithography offers a rapid, low-cost approach for patterning of large-area two-dimensional periodic nanostructures. However, a complete understanding of the nanosphere self-assembly process is necessary to enable further development and scaling of this technology. The self-assembly of nanospheres into two-dimensional periodic arrays has previously been attributed solely to the Marangoni force; however, we demonstrate that the ζ potential of the nanosphere solution is critically important for successful self-assembly to occur. We discuss and demonstrate how this insight can be used to greatly increase self-assembled 2D periodic array areas while decreasing patterning time and cost. As a representative application, we fabricate antireflection nanostructures on a transparent flexible polymer substrate suitable for use as a large-area (270 cm2), broadband, omnidirectional antireflection film.The first total synthesis of the bicyclic depsipeptide natural product seongsanamide B is described. The successful approach employed solid-phase peptide synthesis of a core heptapeptide, incorporating on-resin esterification, followed by solution-phase macrolactamization and a late stage intramolecular Evans-Chan-Lam coupling to generate the biaryl ether of the isodityrosine unit.β-Turn tetrapeptides were demonstrated to catalyze asymmetric aldol reaction of α-branched aldehydes and α-carbonyl aldehydes, i.e. glyoxylates and α-ketoaldehydes, to biomimetically synthesize acyclic all-carbon quaternary center-bearing 1,4-dicarbonyls in high yield and excellent enantioselectivity under mild conditions. The spatially restricted environment of the tetrapeptide warrants high enantioselectivity and yield with broad substrates. Using this protocol, (R)-pantolactone, the key intermediate of vitamin B5, was readily accessed in a practical, efficient, and environmentally benign process from inexpensive starting materia