https://www.selleckchem.com/products/pitstop-2.html Nitrogen remains an important macronutrient in plant root growth due to its application in amino acid production, in addition to its more elusive role in cellular signalling through nitric oxide (NO). NO is widely accepted as an important signalling oxidative radical across all organisms, leading to its study in a wide range of biological pathways. Along with its more stable NO donor, S-nitrosoglutathione (GSNO), formed by NO non-enzymatically in the presence of glutathione (GSH), NO is a redox-active molecule capable of mediating target protein cysteine thiols through the post translational modification, S-nitrosation. S-nitrosoglutathione reductase (GSNOR) thereby acts as a mediator to pathways regulated by NO due to its activity in the irreversible reduction of GSNO to oxidized glutathione (GSSG) and ammonia. GSNOR is thought to be pleiotropic and often acts by mediating the cellular environment in response to stress conditions. Under optimal conditions its activity leads to growth by transcriptional upregulation of the nitrate transporter, NRT2.1, and through its interaction with phytohormones like auxin and strigolactones associated with root development. However, in response to highly nitrosative and oxidative conditions its activity is often downregulated, possibly through an S-nitrosation site on GSNOR at cys271, Though GSNOR knockout mutated plants often display a stunted growth phenotype in all structures, they also tend to exhibit a pre-induced protective effect against oxidative stressors, as well as an improved immune response associated with NO accumulation in roots.National rates of aquatic food consumption in Pacific Island Countries and Territories are among the highest in the world, yet the region is suffering from extensive levels of diet-related ill health. The aim of this paper is to examine the variation in consumption patterns and in nutrient composition of aquatic foods in the Pacific, to he