https://www.selleckchem.com/products/BI6727-Volasertib.html In combination therapy, synergetic effects of drugs and their efficient delivery are essential. Herein, we screened 12 anticancer drugs for combination with photodynamic therapy (PDT) using pheophorbide a (Pba). On the basis of combination index (CI) values in cell viability tests, we selected tirapazamine (TPZ) and developed self-assembled gelatin nanoparticles (NPs) containing both Pba and TPZ. The resulting TPZ-Pba-NPs showed a synergetic effect to kill tumor cells because TPZ was activated under the hypoxic conditions that originated from the PDT with Pba and laser irradiation. After they were injected into tumor-bearing mice via the tail vein, TPZ-Pba-NPs showed 3.17-fold higher blood concentration and 4.12-fold higher accumulation in tumor tissue 3 and 24 h postinjection, respectively. Upon laser irradiation to tumor tissue, TPZ-Pba-NPs successfully suppressed tumor growth by efficient drug delivery and synergetic effects in vivo. These overall results suggest that in vitro screening of drugs based on CI values, mechanism studies in hypoxia, and real-time in vivo imaging are promising strategies in developing NPs for optimized combination therapy.Near-infrared organic photodetectors (NIR OPDs) have attracted considerable attention because of their inherent advantages such as a tailorable light absorption property, low-cost fabrication, compatibility with flexible substrates, and room-temperature operation. In particular, the development of NIR detection between 900 and 950 nm is crucial for noise-free communication in ambient environments. In this work, we demonstrate high-detectivity NIR OPDs at 900-950 nm by employing a non-fullerene acceptor (ITIC) used with an NIR-absorbing conjugated polymer (PNIR) for bulk heterojunction (BHJ), which significantly suppressed dark current. Systemic characterizations including electrical, structural, and morphological analyses revealed that ITIC effectively reduce