https://www.selleckchem.com/products/incb084550.html Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.In this paper we present a highly efficient coding procedure, specially designed and dedicated to operate with high dynamic range (HDR) RCCC (red, clear, clear, clear) image sensors used mainly in advanced driver-assistance systems (ADAS) and autonomous driving systems (ADS). The coding procedure can be used for a lossless reduction of data volume under developing and testing of video processing algorithms, e.g., in software in-the-loop (SiL) or hardware in-the-loop (HiL) conditions. Therefore, it was