Our computational data show that the structures of the active site and the formation frequencies of the appropriate catalytic dyad structures in the artificial-mutant RNases A were quite different from wild-type RNase A. These computational findings may provide an explanation for the experimental data which show that artificial-mutant RNases A lack enzymatic activity. Herein, MD simulations have been used to evaluate the influences of isomerized Asp residues on the 3D structures of proteins.Propofol is a commonly used anesthetic drug in clinic. In recent years, a series of non-anesthetic effects of propofol have been discovered. Studies have shown that propofol has many effects on the intestine. Epidermal growth factor (EGF) is one of the most important growth factors that could regulate intestinal growth and development. In the current study, we studied the effect of protocol on the biological activity of EGF on intestinal tissue and cell models. Through flow cytometry, indirect immunofluorescence and Western-blot and other technologies, it was found that propofol reduced the activity of EGF on intestinal cells, which inhibited EGF-induced intestinal cell proliferation and changed the cell behavior of EGF. To further explore the potential mechanism by which propofol down-regulated epidermal growth factor receptor (EGFR)-induced signaling, we carried out a series of related experiments, and found that propofol may inhibit the proliferation of intestinal cells by inhibiting the EGFR-mediated intracellular signaling pathway. The current research will lay the theoretical and experimental basis for further study of the effect of propofol on the intestine.Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. https://www.selleckchem.com/products/e-7386.html Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.The corneal epithelium is continuously exposed to oxygen, light, and environmental substances. Excessive exposure to those stresses is thought to be a risk factor for eye diseases. Photokeratitis is damage to the corneal epithelium resulting in a painful eye condition caused by unprotected exposure to UV rays, usually from sunlight, and is often found in people who spend a long time outdoors. In modern life, human eyes are exposed to artificial light from light-emitting diode (LED) displays of computers and smartphones, and it has been shown that short-wavelength (blue) LED light can damage eyes, especially photoreceptors. However, the effect of blue LED light on the cornea is less understood. In addition, it is important to develop new treatments for preserving human eyesight and eye health from light stress. Here, we used human corneal epithelial cells-transformed (HCE-T) cells as an in-vitro model to investigate the protective effect of NSP-116, an imidazolyl aniline derivative, against the oxidative stress induced by light in the corneal epithelium. Treatment with 10 µM NSP-116 significantly increased the cell viability and reduced the death ratio following UV or blue LED light exposure. Furthermore, NSP-116 treatment decreased light-induced reactive oxygen species production and preserved the mitochondrial membrane potential. Immunoblotting data showed that NSP-116 suppressed the stress response pathway. Finally, NSP-116 treatment prevented corneal epithelial apoptosis induced by blue LED light in an in-vivo mouse model. In conclusion, NSP-116 has a protective effect against oxidative stress and corneal cell death from both UV and blue LED light exposure.Type I platelet-activating factor-acetylhydrolase (PAF-AH) forms a complex consisting of two catalytic subunits (α1 and/or α2) with a regulatory subunit (β). Although this protein was discovered as an enzyme that degrades an acetyl ester linked at the sn-2 position of platelet-activating factor (PAF), its physiological function remains unknown. In this study, to examine whether knockout mice lacking the catalytic subunits of this enzyme showed a different phenotype from that of wild-type mice, we measured and compared the body weights of knockout mice and control mice. The body weights of knockout mice were significantly increased compared to those of the control mice during 6 to 20 weeks from birth. Food intake was also significantly increased in knockout mice compared with control mice during these periods. Since a decrease in testis weight was reported in the knockout mice, we expected a decrease in testosterone levels. We measured and compared the amounts of testosterone in the serum and testis of knockout and control mice using liquid chromatography-tandem mass spectrometry, and found that testosterone levels in both the serum and testis were significantly decreased in the knockout mice compared with the control mice.