https://www.selleckchem.com/products/pf-07220060.html Currents trends in DI-SDME and possible future direction of the procedure are discussed. Herein, a new magnetic hydrochar was prepared through co-hydrothermal treatment of vinasse with red mud, two abundant industrial wastes, and its adsorption property was evaluated on Pb(II), selected model ion in aqueous solution. During co-hydrothermal process, Fe2O3 species in red mud was reduced to Fe3O4 form, hereby, in situ magnetization of hydrochar was achieved, which was confirmed by characterization studies. Produced hydrochar with porous structure (Vtotal = 0.071 cm3/g and BET surface area = 23 m2/g) had saturation magnetization (44.7 emu/g), providing easier separation from water by a magnet. Maximum Pb(II) adsorption was favored at pH ≥ 5.0 within 120 min of equilibrium time and Freundlich isotherm model was preferable. The contribution percentage of different mechanisms including cation-exchange (40.8 %), (electrostatic attraction + "cation-π" interaction) (31.2 %), precipitation (25.4 %) and complexation (2.6 %) to overall Pb(II) adsorption indicated that cation-exchange was the dominant mechanism. Finally, application to fortified real water demonstrated that in situ magnetic hydrochar produced by suggested approach was successful at adsorptive removal of Pb(II) from water with no matrix effects. Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was germinated in-vitro with and without 1-100 μg mL-1 few-layer graphene (FLG), G