Biallelic neuroblastoma amplified sequence (NBAS) gene mutations have recently been identified to cause a reduction in its protein expression and a broad phenotypic spectrum, from isolated short stature, optic nerve atrophy, and Pelger-Huët anomaly (SOPH) syndrome or infantile liver failure syndrome 2 to a combined, multi-systemic disease including skeletal dysplasia and immunological and neurological abnormalities. Herein, we report a 34-year-old patient with a range of phenotypes for NBAS deficiency due to compound heterozygous variants; one is a SOPH-specific variant, p.Arg1914His, and the other is a novel splice site variant, c.6433-2A>G. The patient experienced recurrent acute liver failure until early childhood. Hypogammaglobulinemia, a decrease in natural killer cells, and optic nerve atrophy were evident from infancy to childhood. In adulthood, the patient exhibited novel phenotypic features such as hepatic cirrhosis complicated by portal hypertension and autoimmune hemolytic anemia. The patient also suffered from childhood-onset insulin-requiring diabetes with progressive beta cell dysfunction. The patient had severe short stature and exhibited dysmorphic features compatible with SOPH, intellectual disability, and epilepsy. NBAS protein expression in the patient's fibroblasts was severely low. https://www.selleckchem.com/products/cytidine-5-triphosphate-disodium-salt.html RNA expression analysis for the c.6433-2A>G variant showed that this variant activated two cryptic splice sites in intron 49 and exon 50, for which the predicted consequences at the protein level were an in-frame deletion/insertion, p.(Ile2199_Asn2202delins16), and a premature termination codon, p.(Ile2199Tyrfs*17), respectively. These findings indicate that NBAS deficiency is a multi-systemic progressive disease. The results of this study extend the spectrum of clinical and genetic findings related to NBAS deficiency.Atractylodin and β-eudesmol are the major active ingredients of Atractylodes lancea (Thunb) DC. (AL). Both compounds exhibit various pharmacological activities, including anticancer activity against cholangiocarcinoma. Despite the widespread use of this plant in traditional medicine in China, Japan, Korea, and Thailand, studies of their toxicological profiles are limited. The present study aimed to evaluate the embryotoxicity of atractylodin and β-eudesmol using the zebrafish model. Zebrafish embryos were exposed to a series of concentrations (6.3, 12.5, 25, 50, and 100 μM) of each compound up to 72 h post-fertilization (hpf). The results showed that atractylodin and β-eudesmol induced mortality of zebrafish embryos with the 50% lethal concentration (LC50) of 36.8 and 53.0 μM, respectively. Both compounds also caused embryonic deformities, including pericardial edema, malformed head, yolk sac edema, and truncated body. Only β-eudesmol decreased the hatching rates, while atractylodin reduced the heart rates of the zebrafish embryos. Additionally, both compounds increased reactive oxygen species (ROS) production and altered the transcriptional expression levels of superoxide dismutase 1 (sod1), catalase (cat), and glutathione S-transferase pi 2 (gstp2) genes. In conclusion, atractylodin and β-eudesmol induce mortality, developmental toxicity, and oxidative stress in zebrafish embryos. These findings may imply similar toxicity of both compounds in humans.Neuroinflammation has been associated to neurodegenerative disease development, with evidence suggesting that high levels of proinflammatory cytokines promote neuronal dysfunction and death. Therefore, it is necessary to study new compounds that may be used as adjuvant treatments of neurodegenerative diseases by attenuating the inflammatory response in the central nervous system (CNS). The aim of this study was to utilize the lipopolysaccharide (LPS) induction model of neuroinflammation to evaluate the modulation of inflammation by rosmarinic acid (RA) isolated from Blechnum brasiliense in adult zebrafish. First, we investigated the toxicity and antioxidant properties of fractionated B. brasiliense extract (ethyl acetate fraction- EAF) and the isolated RA in zebrafish embryos. Next, we developed a model of neuroinflammation induction by intraperitoneal (i.p.) injection of LPS to observe the RA modulation of proinflammatory cytokines. The median lethal concentration (LC50) calculated was 185.2 ± 1.24 μg/mL for the ethyl acetate fraction (EAF) and 296.0 ± 1.27 μM for RA. The EAF showed free radical inhibition ranging from 23.09% to 63.44% at concentrations of 10-250 μg/mL. The RA presented a concentration-dependent response ranging from 18.24% to 47.63% at 10-250 μM. Furthermore, the RA reduced LPS induction of TNF-α and IL-1β levels, with the greatest effect observed 6 h after LPS administration. Thus, the data suggested an anti-inflammatory effect of RA isolated from B. brasiliense and reinforced the utility of the new model of neuroinflammation to test the possible neuroprotective effects of novel drugs or compounds.Social defeat (SD) has been implicated in different modulatory effects of physiology and behaviour including learning and memory. We designed an experiment to test the functional role of monoamine oxidase (MAO) in regulation of synaptic transmission, synaptic plasticity and memory in goldfish Carassius auratus. To test this, individuals were divided into three groups (i) control; (ii) social defeat (SD) group (individuals were subjected to social defeat for 10 min by Pseudotropheus demasoni) and (iii) SD + MAO inhibitor pre-treated group. All experimental groups were subjected to spatial learning and then memory. Our results suggest that SD affects a spatial learning and memory, whereas SD exerts no influence on MAOI pre-treated group. In addition, we noted that the expression of monoamine oxidase-A (MAO-A) was up-regulated and level of serotonin (5-hydroxytryptamine; 5-HT), expression of serotonin transporter (SERT), synaptophysin (SYP), synaptotagmin -1 (SYT-1), N-methyl-D-asparate (NMDA) receptors subunits (NR2A and NR2B), postsynaptic density-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) were reduced by SD, while MAOIs pretreatment protects the effect of SD. Taken together, our results suggest that MAO is an essential component in the serotonergic system that finely tunes the level of 5-HT, which further regulates the molecules involving in synaptic transmission, synaptic plasticity and memory.