https://www.selleckchem.com/mTOR.html Furthermore, the grasping performance was evaluated to show the abilities. The experiments indicated the superior performance of the proposed gripper and the multimode grasping ability that satisfies various grasping tasks.Since 30 years, bioengineering allowed to reconstruct human tissues using normal human cells. Skin is one of the first organ to be reconstructed thanks to the development of specific cell culture media and supports favoring the culture of human skin cells, such as fibroblasts, keratinocytes, or melanocytes. Skin models have evolved from epidermis to complex models including a dermis. The purpose of the present study was to design a reconstructed full-thickness (FT) skin suitable to perform in vitro testing of both molecules and plant extracts. First, we reconstructed epidermis with normal human keratinocytes displaying the expected multilayered morphology and expressing specific epidermal proteins (e-cadherin, claudin-1, p63, Ki67, Keratin 10, filaggrin, and loricrin). Then, a dermal equivalent was developed using a collagen matrix allowing the growth of fibroblasts. The functionality of the dermis was demonstrated by the measurement of skin parameters such as rigidity or elasticity with Ballistometer® and ot chemical or natural compounds on the skin.Soft gripping provides the potential for high performance in challenging tasks through morphological computing; however, design explorations are limited by a combination of a difficulty in generating useful models and use of laborious fabrication techniques. We focus on a class of grippers based on granular jamming that are particularly difficult to model and introduce a "one shot" technique that exploits multimaterial three-dimensional (3D) printing to create entire grippers, including membrane and grains, in a single print run. This technique fully supports the de facto physical generate-and-test methodology used for this class of grippers, as entire design iter