Behavior change apps can develop iteratively, where the app evolves into a complex, dynamic, or personalized intervention through cycles of research, development, and implementation. Understanding how existing users engage with an app (eg, frequency, amount, depth, and duration of use) can help guide further incremental improvements. We aim to explore how simple visualizations can provide a good understanding of temporal patterns of engagement, as usage data are often longitudinal and rich. This study aims to visualize behavioral engagement with Drink Less, a behavior change app to help reduce hazardous and harmful alcohol consumption in the general adult population of the United Kingdom. We explored behavioral engagement among 19,233 existing users of Drink Less. Users were included in the sample if they were from the United Kingdom; were 18 years or older; were interested in reducing their alcohol consumption; had a baseline Alcohol Use Disorders Identification Test score of 8 or above, indicative of izations play an important role in understanding engagement with behavior change apps. Here, we discuss how simple visualizations helped identify important patterns of engagement with Drink Less. Our visualizations of behavioral engagement suggest that the daily notification substantially impacts engagement. Furthermore, the visualizations suggest that a fixed notification policy can be effective for maintaining engagement for some users but ineffective for others. We conclude that optimizing the notification policy to target both effectiveness and engagement is a worthwhile investment. Our future goal is to both understand the causal effect of the notification on engagement and further optimize the notification policy within Drink Less by tailoring to contextual circumstances of individuals over time. Such tailoring will be informed from the findings of our micro-randomized trial (MRT), and these visualizations were useful in both gaining a better understanding of engagement and designing the MRT.Single measurements of salivary and plasmatic oxytocin are used as indicators of the physiology of the oxytocin system. However, questions remain about whether they are sufficiently stable to provide valid trait markers of the physiology of the oxytocin system, and whether salivary oxytocin can accurately index its plasmatic concentrations. Using radioimmunoassay, we measured baseline plasmatic and/or salivary oxytocin from two independent datasets. We also administered exogenous oxytocin intravenously and intranasally in a triple dummy, within-subject, placebo-controlled design and compared baseline levels and the effects of routes of administration. Our findings question the use of single measurements of baseline oxytocin concentrations in saliva and plasma as valid trait markers of the physiology of the oxytocin system in humans. Salivary oxytocin is a weak surrogate for plasmatic oxytocin. The increases in salivary oxytocin observed after intranasal oxytocin most likely reflect unabsorbed peptide and should not be used to predict treatment effects.Most vertebrates host a wide variety of haematophagous parasites, which may play an important role in the transmission of vector-borne microorganisms to hosts. Surveillance is usually performed by collecting blood and/or tissue samples from vertebrate hosts. There are multiple methods to obtain samples, which can be stored for decades if properly kept. However, blood sampling is considered an invasive method and may possibly be harmful to the sampled individual. In this study, we investigated the use of ectoparasites as a tool to acquire molecular information about the presence and diversity of infectious microorganism in host populations. We tested the presence of three distinct vector-borne microorganisms in both bat blood and bat flies Bartonella bacteria, malaria-like Polychromophilus sp. (Apicomplexa), and Trypanosoma sp. https://www.selleckchem.com/products/bay-3827.html (Kinetoplastea). We detected the presence of these microorganisms both in bats and in their bat flies, with the exception of Trypanosoma sp. in South African bat flies. Additionally, we found Bartonella sp. in bat flies from one population in Spain, suggesting its presence in the host population even if not detected in bats. Bartonella and Polychromophilus infection showed the highest prevalence in both bat and bat fly populations. Single, co- and triple infections were also frequently present in both. We highlight the use of haematophagous ectoparasites to study the presence of infectious microorganism in host blood and its use as an alternative, less invasive sampling method.Parasite biodiversity of fish in coral reefs of the South China Sea is still incompletely explored. We describe here a new species of Neohexostoma (Monogenea Hexostomatidae) from the gill filaments of the dogtooth tuna Gymnosarda unicolor (Scombridae), collected off Yongshu Reef, South China Sea. Neohexostoma gymnosardae n. sp. is distinguished from its congeners by the following features (i) haptor clearly marked from body proper by a strongly constricted peduncle, divided in its posterior margin into two symmetrical lobes, (ii) vagina armed with scattered small blunt spines, (iii) eggs tied by their long polar filaments, (vi) esophagus with several lateral diverticula, (v) intestinal ceca unfused and extending into the haptor. We present an analysis of the relationships of this monogenean based on partial 28S rDNA sequences. An identification key for species of Neohexostoma is provided. This is the first member of the genus Neohexostoma known to parasitize a species of Gymnosarda.Apical membrane antigen 1 (AMA1) is a type I integral membrane protein that is highly conserved in apicomplexan parasites. Previous studies have shown that Eimeria tenella AMA1 (EtAMA1) is critical for sporozoite invasion of host cells. Here, we show that EtAMA1 is a microneme protein secreted by sporozoites, confirming previous results. Individual and combined treatment with antibodies of EtAMA1 and its interacting proteins, E. tenella rhoptry neck protein 2 (EtRON2) and Eimeria-specific protein (EtESP), elicited significant anti-invasion effects on the parasite in a concentration-dependent manner. The overexpression of EtAMA1 in DF-1 cells showed a significant increase of sporozoite invasion. Isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were used to screen differentially expressed proteins (DEPs) in DF-1 cells transiently transfected with EtAMA1. In total, 3953 distinct nonredundant proteins were identiļ¬ed and 163 of these were found to be differentially expressed, including 91 upregulated proteins and 72 downregulated proteins.