https://www.selleckchem.com/products/tiplaxtinin-pai-039.html Estuary and coastal environments have essential ecosystem functions in greenhouse gas sinks and removal of nitrogen pollution. Methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) communities play critical functions in the estuary's tidal flat sediments. Therefore, the effects of ammonium on MOB communities and methane on AOB communities need to be further explained. In this study, microcosm incubations with different contents of ammonium or methane were conducted for a relatively short (24 h) or long (28 days) period with tidal flat sediments from the Yangtze River estuary. Subsequently, the tagged highly degenerate primer PCR and DNA-based stable isotope probing method were employed to demonstrate the effects on MOB and AOB populations. The results indicated that the methane consumption was enhanced with ammonium supplements within 24 h of incubation. Supplement of 2 μmol/g d.w.s (μmol per gram dry weight soil) NH4+ increased the amount of MOB and its proportion to the total bacteria (p less then 0.05) for 28 days incubation. The ammonium supplement increased the proportion of Methylomonas and Methylobacter based on the 16S rRNA gene. According to the functional gene analysis, the MOB primarily engaged in methane oxidation include Methylomonas, Methylobacter, Methylomicrobium, and Methylosarcina, which were associated with Type Ia MOB. It suggested that ammonium supplement may promote methane oxidation by stimulating the Type Ia MOB in tidal flat sediments of the Yangtze River estuary. The current research helps understand the effect of ammonium on methane consumption in the estuary and coastal environments.Estuary connects the inland freshwater and open seawater, which may become a sink for pollutants from land-derived outflows, especially for persistent organic pollutants (e.g., polycyclic aromatic hydrocarbons, PAHs). Due to complex fluctuation in estuary, it's difficult to achieve a