https://www.selleckchem.com/products/oxidopamine-hydrobromide.html In explaining extensive evidence for past liquid water, the debate on whether Mars was primarily warm and wet or cold and arid 4 billion years (Ga) ago has continued for decades. The Sun's luminosity was ~30% lower 4 Ga ago; thus, most martian climate models struggle to elevate the mean surface temperature past the melting point of water. Basal melting of ice sheets may help resolve that paradox. We modeled the thermophysical evolution of ice and estimate the geothermal heat flux required to produce meltwater on a cold, arid Mars. We then analyzed geophysical and geochemical data, showing that basal melting would have been feasible on Mars 4 Ga ago. If Mars were warm and wet 4 Ga ago, then the geothermal flux would have even sustained hydrothermal activity. Regardless of the actual nature of the ancient martian climate, the subsurface would have been the most habitable region on Mars.Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, provi