https://www.selleckchem.com/products/sodium-palmitate.html Alkanol dehydration rates catalyzed by hydronium ions are enhanced by the dimensions of steric confinements of zeolite pores as well as by intraporous intermolecular interactions with other alkanols. The higher rates with zeolite MFI having pores smaller than those of zeolite BEA for dehydration of secondary alkanols, 3-heptanol and 2-methyl-3-hexanol, is caused by the lower activation enthalpy in the tighter confinements of MFI that offsets a less positive activation entropy. The higher activity in BEA than in MFI for dehydration of a tertiary alkanol, 2-methyl-2-hexanol, is primarily attributed to the reduction of the activation enthalpy by stabilizing intraporous interactions of the Cβ -H transition state with surrounding alcohol molecules. Overall, we show that the positive impact of zeolite confinements results from the stabilization of transition state provided by the confinement and intermolecular interaction of alkanols with the transition state, which is impacted by both the size of confinements and the structure of alkanols in the E1 pathway of dehydration.Worldwide elderly traumatic brain injury (TBI) patients tend to become an increasing burden to the society. Thus, a faster and less expensive way of evaluating TBI victims is needed. In the present study we investigated if optical coherence tomography (OCT) could be used as such a method. By using an animal model, we established if OCT can detect cortical changes in the acute phase of a penetrating TBI, in young (5-7 months) and old (20-22 months) rats. Due to the long-term evolution of TBI's, we wanted to investigate to what extent OCT could detect changes within the cortex in the chronic phase. Adult (7-12 months) male rats were used. Surprisingly, OCT imaging of the normal hemisphere was able to discriminate age-related differences in the mean gray values (MGV) of recorded pixels (p = .032). Furthermore, in the acute phase of TBI, OCT images r