https://www.selleckchem.com/products/neo2734.html Under conditions of significant flow-induced disentanglement, the rate of change of the effective restoring force initially decreases with extension (effective spring softening) and then increases (hardens) as the maximum chain length is approached. When balanced by flow-induced chain stretching, we find that there can be two configuration states within the same De regime, as covered by the NEMD simulations; therefore, a region of conformational coexistence can indeed exist. However, we demonstrate that this coexistence of configurational microstates is only possible when the magnitude of the CCR parameters is consistent with the rate of flow-induced disentanglement, as observed in the NEMD simulations.The vibrational energy relaxation paths of hydrogen-bonded (H-bonded) OH excited in pure water and in isotopically diluted (deuterated) water are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The present study extends the previous NE-AIMD simulation for the energy relaxation of an excited free OH vibration at an air/water interface [T. Ishiyama, J. Chem. Phys. 154, 104708 (2021)] to the energy relaxation of an excited H-bonded OH vibration in bulk water. The present simulation shows that the excited OH vibration in pure water dissipates its energy on a timescale of 0.1 ps, whereas that in deuterated water relaxes on a timescale of 0.7 ps, consistent with the experimental observations. To decompose these relaxation energies into the components due to intramolecular and intermolecular couplings, constraints are introduced on the vibrational modes except for the target path in the NE-AIMD simulation. In the case of pure water, 80% of the total relaxation is attributed to the pathway due to the resonant intermolecular OH⋯OH stretch coupling, and the remaining 17% and 3% are attributed to intramolecular couplings with the bend overtone and with the conjugate OH stretch, respectively. Thi