https://www.selleckchem.com/products/Phlorizin(Phloridzin).html Conventional anthelmintics such as albendazole could not achieve complete cure of trichinellosis till now. The antimalarial mefloquine mediates oxidative stress and disrupts lysosomal functions leading to cell death. Therefore, the aim of this work was to investigate the effect of mefloquine on experimental acute and chronic trichinellosis and to clarify the possible mechanisms of such effects. Mice were divided into four groups; Group I Uninfected untreated control (20 mice); Group II Infected untreated control (40 mice); Group III infected and treated with albendazole (400 mg/kg) (40 mice); Group IV infected and treated with mefloquine (300 mg/kg) (40 mice). All infected treated groups were equally subdivided into 2 subgroups; (a) treated on the 2nd day post infection (dpi) for 3 days, (b) treated on the 35th dpi for 5 days. Parasitological adults and larvae counting besides immunohistopathological examination of intestines and muscles were done. Biochemical assay of oxidant/antioxidant status, apoptotic, cytoprotective and inflammatory biomarkers in intestinal and muscle homogenates were achieved. Results showed that both albendazole and mefloquine significantly reduced adults and larvae counts with higher efficacy of albendazole in the intestinal phase and superiority of mefloquine in the muscle phase. The superiority of mefloquine was indicated by increased inflammatory immune infiltration and decreased anti-apoptotic immunohistochemical markers expression in both jejunal and muscle tissues. Biochemically, mefloquine treatment showed highly significant oxidative, apoptotic and inflammatory effects. So, our results suggest that mefloquine might be a superior treatment for chronic trichinellosis.We consider a Prisoner's Dilemma (PD) that is repeated with some probability 1-ρ only between cooperators as a result of an opting-out strategy adopted by all individuals. The population is made of N pairs of