https://www.selleckchem.com/products/brincidofovir.html Gemcitabine (GEM) and its derivatives of deoxycytosine is a promising anticancer candidate which is effective for the treatment of various cancers including lung cancer via cascade targetting Erk/Mek/Raf/Ras pathway and blocking the proliferation of the tumor cells. In this present work, we have described reduced graphene oxide (rGO) in the presence of anticancer utilizing ascorbic acid as reducing agents for lung cancer treatment. GEM reduced graphene oxide (termed as GEM-rGO) has resulted in a smooth and transparent morphological surface, which was confirmed by various spectroscopical investigations. The anticancer drug-loaded rGO has displayed remarkable cytotoxic activities against a panel of lung cancer cell lines when compared to the untreated lung cancer cells. Further, we examined the morphological observation of the cancer cell death was monitored through the fluorescence microscopic examinations. In addition, the cell deaths of the lung cancer cells were observed by the flow cytometry analyses. In addition, the non-toxic nature of potent GEM-rGO and GEM-rGO + NIR was confirmed by in vivo systemic toxicity analysis. Besides, the higher safety feature of the GEM-rGO and GEM-rGO + NIR was evidenced by histological analyses of the mice organs. The subcutaneous injection of GEM-rGO and GEM-rGO + NIR into mice bearing A549 xenografts more effectively inhibited the tumor than the free GEM. Based on the outcomes, we can summarise that the GEM reduced graphene oxide (GEM-rGO) can be used as a promising drug candidate for the treatment of lung cancer in the future. Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs