Financial capacity is often one of the first instrumental activities of daily living to be affected in cognitively normal (CN) older adults who later progress to amnestic mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia. The objective of this study was to investigate the association between financial capacity and regional cerebral tau. Cross-sectional financial capacity was assessed using the Financial Capacity Instrument -Short Form (FCI-SF) in 410 CN, 199 MCI, and 61 AD dementia participants who underwent flortaucipir tau positron emission tomography from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Linear regression models with backward elimination were used with FCI-SF total score as the dependent variable and regional tau and tau-amyloid interaction as predictors of interest in separate analyses. Education, age, sex, Rey Auditory Verbal Learning Test Total Learning, and Trail Making Test B were used as covariates. Significant associations were found between FCI-SF utility of such assessments in detecting clinically meaningful decline, which may aid clinical trials of early-stage AD. Individuals with subjective cognitive decline (SCD), defined by self-reported memory complaints but normal performance in objective neuropsychological tests, may be at higher risk of worsening or more frequent memory loss until conversion to Alzheimer's disease (AD) or related dementia. Asymmetry in two hemispheres is a cardinal character of human brain's structure and function, and altered brain asymmetry has also been connected with AD. This study aimed to determine whether the asymmetry of subcortical structures in individuals with SCD and amnestic mild cognitive impairment (aMCI) and AD patients are altered compared with normal controls (NC). We investigated neuroanatomical alterations in 35 SCD, 43 aMCI, and 41 AD subjects compared with 42 NC, focusing on asymmetrical changes in subcortical structures based on structural magnetic resonance images (sMRI). General linear model was conducted to test group differences, and partial correlation was used to model the interaction between asymmetry measuremotential to be used as neuroimaging markers and for monitoring disease progression. Tau is a microtubule associated protein that regulates the stability of microtubules and the microtubule-dependent axonal transport. Its hyperphosphorylated form is one of the hallmarks of Alzheimer's disease and other tauopathies and the major component of the paired helical filaments that form the abnormal proteinaceous tangles found in these neurodegenerative diseases. It is generally accepted that the phosphorylation extent of tau is the result of an equilibrium in the activity of protein kinases and phosphatases. Disruption of the balance between both types of enzyme activities has been assumed to be at the origin of tau hyperphosphorylation and the subsequent toxicity and progress of the disease. We explore the possibility that, beside the phosphatase action on phosphorylated tau, the catalytic subunit of PKA catalyzes both tau phosphorylation and also tau dephosphorylation, depending on the ATP/ADP ratio. We use the shift in the relative electrophoretic mobility suffered by different phosphorylated forms of tau, as a sensor of the catalytic action of the enzyme. The results are in agreement with the long-known thermodynamic reversibility of the phosphorylation reaction (ATP + Protein = ADP+Phospho-Protein) catalyzed by PKA and many other protein kinases. The results contribute to put the compartmentalized energy state of the neuron and the mitochondrial-functions disruption upstream of tau-related pathologies. The results contribute to put the compartmentalized energy state of the neuron and the mitochondrial-functions disruption upstream of tau-related pathologies. Phosphatidylinositol-binding clathrin assembly protein (PICALM) is a validated genetic risk factor for late-onset Alzheimer's disease (AD) and is associated with other neurodegenerative diseases. However, PICALM expression in the blood of neurodegenerative diseases remains elusive. This study aimed to assess the usefulness of PICALM expression levels in the blood of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and geriatric major depressive disorder (MDD) as a diagnostic biomarker. In total, 45, 20, 21, and 19 patients with AD, PD, DLB, and geriatric MDD, respectively, and 54 healthy controls (HCs) were enrolled in the study. Expression data from Gene Expression Omnibus database (GSE97760), (GSE133347) and (GSE98793), (GSE48350), and (GSE144459) were used to validate the ability of biomarkers in the blood of patients with AD, PD, geriatric MDD, and a postmortem human AD brain and animal model of AD (3xTg-AD mouse), respectively. PICALM mRNA expression in human blood was significantly increased in patients with AD compared with that in HCs. PICALM mRNA expression and age were negatively correlated only in patients with AD. PICALM mRNA expression in human blood was significantly lower in patients with PD than in HCs. No changes in PICALM mRNA expression were found in patients with DLB and geriatric MDD. PICALM mRNA expression in blood was higher in patients with AD, but lower in patients with PD, which suggests that PICALM mRNA expression in human blood may be a useful biomarker for differentiating neurodegenerative diseases and geriatric MDD. PICALM mRNA expression in blood was higher in patients with AD, but lower in patients with PD, which suggests that PICALM mRNA expression in human blood may be a useful biomarker for differentiating neurodegenerative diseases and geriatric MDD.Amyloid-β (Aβ) and tau oligomers have been identified as neurotoxic agents responsible for causing Alzheimer's disease (AD). https://www.selleckchem.com/products/deutenzalutamide.html Clinical trials using Aβ and tau as targets have failed, giving rise to calls for new research approaches to combat AD. This paper provides such an approach. Most basic AD research has involved quiescent Aβ and tau solutions. However, studies involving laminar and extensional flow of proteins have demonstrated that mechanical agitation of proteins induces or accelerates protein aggregation. Recent MRI brain studies have revealed high energy, chaotic motion of cerebrospinal fluid (CSF) in lower brain and brainstem regions. These and studies showing CSF flow within the brain have shown that there are two energetic hot spots. These are within the third and fourth brain ventricles and in the neighborhood of the circle of Willis blood vessel region. These two regions are also the same locations as those of the earliest Aβ and tau AD pathology. In this paper, it is proposed that cardiac systolic pulse waves that emanate from the major brain arteries in the lower brain and brainstem regions and whose pulse waves drive CSF flows within the brain are responsible for initiating AD and possibly other amyloid diseases.