https://www.selleckchem.com/products/ly3023414.html We argue that proactive conservation measures to reconnect many riverine populations are urgently needed.As life history diversity plays a critical role in supporting the resilience of exploited populations, understanding the genetic basis of those life history variations is important for conservation management. However, effective application requires a robust understanding of the strength and universality of genetic associations. Here, we examine genetic variation of single nucleotide polymorphisms in genomic regions previously associated with migration phenology and age-at-maturity in steelhead (Oncorhynchus mykiss) from the Columbia River. We found chromosome 28 markers (GREB1L, ROCK1 genes) explained significant variance in migration timing in both coastal and inland steelhead. However, strength of association was much greater in coastal than inland steelhead (R2 0.51 vs. 0.08), suggesting that genomic background and challenging inland migration pathways may act to moderate effects of this region. Further, we found that chromosome 25 candidate markers (SIX6 gene) were significantly associated with age and size at first return migration for inland steelhead, and this pattern was mediated by sex in a predictable pattern (males R2 = 0.139-0.170; females R2 = 0.096-0.111). While this encourages using these candidate regions in predicting life history characteristics, we suggest that stock-specific associations and haplotype frequencies will be useful in guiding implementation of genetic assays to inform management.Local adaptation is particularly likely in invertebrate pests that typically have short generation times and large population sizes, but there are few studies on pest species investigating local adaptation and separating this process from contemporaneous and historical gene flow. Here, we use a population genomic approach to investigate evolutionary processes in the two most dominant spider mites in Chin