The gravity is necessary for living organisms to operate various biological events including hippocampus-related functions of learning and memory. Until now, it remains inconclusive how altered gravity is associated with hippocampal functions. It is mainly due to the difficulties in generating an animal model experiencing altered gravity. Here, we demonstrate the effects of hypergravity on hippocampus-related functions using an animal behavior and electrophysiology with our hypergravity animal model. The hypergravity (4G, 4 weeks) group showed impaired synaptic efficacy and long-term potentiation in CA1 neurons of the hippocampus along with the poor performance of a novel object recognition task. Our studies suggest that altered gravity affects hippocampus-related cognitive functions, presumably through structural and functional adaptation to various conditions of gravity shift.Fossil identifications made in a phylogenetic framework are beholden to specific tree hypotheses. Without phylogenetic consensus, the systematic provenance of any given fossil can be volatile. Paleobiogeographic and divergence time hypotheses are contingent on the accurate systematic placement of fossils. Thus, fossil diagnoses should consider multiple topologies when phylogenetic resolution or clear apomorphies are lacking. However, such analyses are infrequently performed. Pleurodonta (Squamata Iguania) is an ancient and frequently-studied lizard clade for which phylogenetic resolution is notoriously elusive. I describe a skull fossil of a new pleurodontan lizard taxon from the Eocene deposits of the Willwood Formation, Wyoming, and use the new taxon as a case-study to explore the effects of phylogenetic uncertainty on fossil identification. The relationships of the new taxon differ considerably among analyses, and resulting interpretations are correspondingly disparate. These results illustrate generalizable and severe issues with fossil interpretations made without consideration of alternative phylogenetic hypotheses.Many species of terrestrial animals, including primates, live in varied association with the aquatic (e.g., riverine or coastal) environment. However, the benefits that each species receive from the aquatic environment are thought to vary depending on their social and ecological characteristics, and thus, elucidating those benefits to each species is important for understanding the principles of wild animal behaviour. In the present study, to gain a more complete picture of aquatic environment use, including social and ecological factors in primates, factors affecting riverine habitat utilization of two macaque species (Macaca nemestrina and M. fascicularis) were identified and qualitative comparisons were made with sympatric proboscis monkeys (Nasalis larvatus), which have different social and ecological characteristics. Temporal variation in sighting frequency of macaques at the riverbanks was positively related to the fruit availability of a dominant riparian plant species and negatively related to the river water level which affects the extent of predation pressure. Riverine utilization of macaques was greatly influenced by distribution and abundance of food (especially fruit) resources, possibly in association with predation pressure. Additionally, qualitative ecological comparisons with sympatric proboscis monkeys suggest that the drivers of riverine utilization depend on the feeding niches of the species, and different anti-predator strategies resulting from their differing social structures.In the last few years, the application of quantitative methods in the field of use wear analysis has grown considerably, involving the use of different techniques. A development in surface measurements approaches has become necessary as standard assessments based upon qualitative functional analysis are often affected by a degree of subjectivity and a limited reproducibility. To advance the current methodological debate on functional analysis of ground stone technology, we present a combined methodological approach, including qualitative and quantitative analyses, applied to the study of experimental sandstone ground stone tools. We test surface quantification at a macro and micro-scale, paired with the observation and description of residue and use wear connected to the processing of plant, animal and mineral matters. Our results provide an exhaustive quantitative dataset concerning surface modifications associated with different uses and suggest an analytical workflow for the functional analysis of both experimental and archaeological ground stone assemblages. We also highlight the limitation and pitfalls of an exclusive adoption of quantitative methods in the study of ancient tool use demonstrating how a synergetic approach can enhance the quality, reproducibility and comparability of functional data.We investigated the ecological parameter reductions (termed "similitudes") and characteristic patterns of the net uptake fluxes of carbon dioxide (CO2) in coastal salt marshes using dimensional analysis method from fluid mechanics and hydraulic engineering. Data collected during May-October, 2013 from four salt marshes in Waquoit Bay and adjacent estuary, Massachusetts, USA were utilized to evaluate the theoretically-derived dimensionless flux and various ecological driver numbers. Two meaningful dimensionless groups were discovered as the light use efficiency number (LUE = CO2 normalized by photosynthetically active radiation) and the biogeochemical number (combination of soil temperature, porewater salinity, and atmospheric pressure). A semi-logarithmic plot of the dimensionless numbers indicated the emergence of a characteristic diagram represented by three distinct LUE regimes (high, transitional, and low). https://www.selleckchem.com/products/filgotinib.html The high regime corresponded to the most favorable (high temperature and low salinity) condition for CO2 uptake, whereas the low regime represented an unfavorable condition (low temperature and high salinity). The analysis identified two environmental thresholds (soil temperature ~ 17 °C and salinity ~ 30 ppt), which dictated the regime transitions of CO2 uptake. The process diagram and critical thresholds provide important insights into the CO2 uptake potential of coastal wetlands in response to changes in key environmental drivers.