Idiopathic inflammatory myopathies (IIMs) are chronic autoimmune disorders involving multiple organs, such as the muscle, skin, lungs and joints. Although the detailed pathogenesis of IIMs remains unclear, immune mechanisms have long been recognised as of key importance. Immune cells contribute to many inflammatory processes via intercellular interactions and secretion of inflammatory factors, and many studies have demonstrated the participation of a variety of immune cells, such as T cells and B cells, in the development of IIMs. Here, we summarise the current knowledge regarding immune cells in IIM patients and discuss their potential roles in IIM pathogenesis.Parkinson's disease (PD) ranks second among the most common neurodegenerative diseases, characterized by progressive and selective loss of dopaminergic neurons. Various cross-species preclinical models, including cellular models and animal models, have been established through the decades to study the etiology and mechanism of the disease from cell lines to nonhuman primates. These models are aimed at developing effective therapeutic strategies for the disease. None of the current models can replicate all major pathological and clinical phenotypes of PD. Selection of the model for PD largely relies on our interest of study. In this review, we systemically summarized experimental PD models, including cellular and animal models used in preclinical studies, to understand the pathogenesis of PD. This review is intended to provide current knowledge about the application of these different PD models, with focus on their strengths and limitations with respect to their contributions to the assessment of the molecular pathobiology of PD and identification of the therapeutic strategies for the disease.In keeping with its status as one of the major causes of disability and mortality worldwide, brain damage induced by cerebral arterial disease has been the subject of several decades of scientific investigation, which has resulted in a vastly improved understanding of its pathogenesis. Brain injury mediated by venous etiologies, however, such as cerebral, jugular, and vertebral venous outflow disturbance, have been largely ignored by clinicians. Unfortunately, this inattention is not proportional to the severity of cerebral venous diseases, as the impact they exact on the quality of life of affected patients may be no less than that of arterial diseases. This is evident in disease sequelae such as cerebral venous thrombosis (CVT)-mediated visual impairment, epilepsy, and intracranial hypertension; and the long-term unbearable head noise, tinnitus, headache, dizziness, sleeping disorder, and even severe intracranial hypertension induced by non-thrombotic cerebral venous sinus (CVS) stenosis and/or internal jugular venous (IJV) stenosis. In addition, the vertebral venous system (VVS), a large volume, valveless vascular network that stretches from the brain to the pelvis, provides a conduit for diffuse transmission of tumors, infections, or emboli, with potentially devastating clinical consequences. Moreover, the lack of specific features and focal neurologic signs seen with arterial etiologies render cerebral venous disease prone to both to misdiagnoses and missed diagnoses. It is therefore imperative that awareness be raised, and that as comprehensive an understanding as possible of these issues be cultivated. In this review, we attempt to facilitate these goals by systematically summarizing recent advances in the diagnosis and treatment of these entities, including CVT, CVS stenosis, and IJV stenosis, with the aim of providing a valid, practical reference for clinicians.Physical activity, together with its ameliorative effects on Parkinson's disease (PD) symptoms, remains a relatively unappreciated factor which may be beneficial for the treatment outcome. Contemporary evidence supports the positive effects of non-pharmacological approaches to PD symptom management, in particular the effects of the exercise on both, motor and non-motor symptoms. The aim of the study was to review the mechanisms of exercise-induced amelioration of PD symptoms. Methods Electronic databases (PubMed, Web of Science and Google Scholar) were searched using the following key words "Parkinson and physical activity" OR "Parkinson disease and exercise" OR "Parkinson disease and lifestyle factors" OR "Parkinson disease and longevity". A total of 97 studies which investigated PD genetics and various forms of exercise and their etiologic impact on PD were reviewed. The studies were subdivided into four topic groups 1) genetics of PD, 2) exercise and the brain, 3) physical activity and PD, 4) mind-body interventions, and discussed accordingly. Adequate levels of physical activity are associated with higher quality of life in PD patients. Physical activity may have protective and stimulatory effects for better functional efficiency in higher-level cognitive networks. It can also improve balance and motor functions by improving muscle strength. Given the etiologic evidence of the beneficial effects of physical activity on PD, albeit tentative, a concerted effort to elucidate the processes and outcomes of physical activity on ameliorating symptoms of PD must be undertaken.Currently, the world is challenged by the coronavirus disease 2019 (COVID-19) pandemic. Epidemiologists and researchers worldwide are invariably trying to understand and combat this precarious new disease. Scrutinizing available drug options and developing potential new drugs are urgent needs to subdue this pandemic. Several intervention strategies are being considered and handled worldwide with limited success, and many drug candidates are yet in the trial phase. https://www.selleckchem.com/products/Camptothecine.html Despite these limitations, the development of COVID-19 treatment strategies has been accelerated to improve the clinical outcome of patients with COVID-19, and some countries have efficiently kept it under control. Recently, the use of natural and traditional medicine has also set the trend in coronavirus treatment. This review aimed to discuss the prevailing COVID-19 treatment strategies available globally by examining their efficacy, potential mechanisms, limitations, and challenges in predicting a future potential treatment candidate and bridging them with the effective traditional Chinese medicine (TCM).