https://www.selleckchem.com/products/shield-1.html A Correction to this paper has been published https//doi.org/10.1038/s41467-020-20288-9.Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission.Long noncoding RNAs (lncRNAs), once considered to be nonfunctional relics of evolution, are emerging as essential genes in tumor progression. However, the function and underlying mechanisms of lncRNAs in glioma remain unclear. This study aimed to investigate the role of LINC00998 in glioma progression. Through screening using TCGA database, we found that LINC00998 was downregulated in glioblastoma tissues and that low expression of LINC00998 was associated with poor prognosis. Overexpression of LINC00998 inhibited glioma cell proliferation in vitro and in vivo and blocked the G1/S cell cycle transition, which exerted a tumor-suppressive effect on glioma progression. Mechanistically, RNA pull-down and mass spectrometry results showed an interaction bet