https://www.selleckchem.com/screening-libraries.html The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed. Waltheria Indica L. is traditionally used in Africa, South America and Hawaii to treat pain, anemia, diarrhea, epilepsy and inflammatory related diseases. This study aimed to identify extraction parameters to maximize tiliroside yield and to quantitative secondary metabolite composition of Waltheria Indica under various extraction conditions. The extracts were tested for COX-2 inhibition and their activity correlated with the type and quantity of the secondary metabolites. Insight was gained about how extraction parameters influence the extract composition and thus the COX-2 enzymatic inhibitory activity. Powdered leaves of Waltheria Indica were extracted using water, methanol, ethyl acetate and ethanol at different temperatures. Tiliroside